WARUNKI BRZEGOWE
|
|
|
|
---|
Obliczenie wyznaczników:
W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | W13 | W14 | W15 | W16 | W17 | W18 | W19 | W20 | W21 | W22 | W23 | W24 | W25 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 22 | -8 | 1 | 0 | 0 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | -8 | 21 | -8 | 1 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | -8 | 21 | -8 | 1 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 1 | -8 | 21 | -8 | 0 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 1 | -8 | 20 | 0 | 0 | 0 | 2 | -8 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | -8 | 2 | 0 | 0 | 0 | 21 | -8 | 1 | 0 | 0 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 2 | -8 | 2 | 0 | 0 | -8 | 20 | -8 | 1 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 20 | -8 | 1 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 20 | -8 | 0 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 2 | -8 | 0 | 0 | 1 | -8 | 19 | 0 | 0 | 0 | 2 | -8 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
11 | 1 | 0 | 0 | 0 | 0 | -8 | 2 | 0 | 0 | 0 | 21 | -8 | 1 | 0 | 0 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 0 | -8 | 20 | -8 | 1 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
13 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 20 | -8 | 1 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 |
14 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 20 | -8 | 0 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 |
15 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 0 | 0 | 1 | -8 | 19 | 0 | 0 | 0 | 2 | -8 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | -8 | 2 | 0 | 0 | 0 | 21 | -8 | 1 | 0 | 0 | -8 | 2 | 0 | 0 | 0 |
17 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 0 | -8 | 20 | -8 | 1 | 0 | 2 | -8 | 2 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 20 | -8 | 1 | 0 | 2 | -8 | 2 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 20 | -8 | 0 | 0 | 2 | -8 | 2 |
20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 0 | 0 | 1 | -8 | 19 | 0 | 0 | 0 | 2 | -8 |
21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | -8 | 2 | 0 | 0 | 0 | 20 | -8 | 1 | 0 | 0 |
22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 0 | -8 | 19 | -8 | 1 | 0 |
23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 19 | -8 | 1 |
24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 19 | -8 |
25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 0 | 0 | 1 | -8 | 18 |
$$\frac{px^{4}}{D} = \frac{40 \bullet 1^{4}}{20571,43} = 0,00188\ m$$
p = 40 kN/m2
x = 1 m
$$D = \frac{Eh^{3}}{12(1 - \upsilon^{2})} = \frac{31 \bullet 10^{6} \bullet {0,2}^{3}}{12\left( 1 - \frac{1}{6}^{2} \right)} = 21257,14\ \text{kNm}$$
m | mm | |
---|---|---|
W1 | 0,0007 | 0,72 |
W2 | 0,0016 | 1,55 |
W3 | 0,0020 | 1,99 |
W4 | 0,0019 | 1,90 |
W5 | 0,0012 | 1,21 |
W6 | 0,0016 | 1,55 |
W7 | 0,0034 | 3,39 |
W8 | 0,0044 | 4,39 |
W9 | 0,0042 | 4,16 |
W10 | 0,0026 | 2,61 |
W11 | 0,0020 | 1,99 |
W12 | 0,0044 | 4,39 |
W13 | 0,0057 | 5,70 |
W14 | 0,0054 | 5,38 |
W15 | 0,0034 | 3,35 |
W16 | 0,0019 | 1,90 |
W17 | 0,0042 | 4,16 |
W18 | 0,0054 | 5,38 |
W19 | 0,0051 | 5,07 |
W20 | 0,0032 | 3,16 |
W21 | 0,0012 | 1,21 |
W22 | 0,0026 | 2,61 |
W23 | 0,0034 | 3,35 |
W24 | 0,0032 | 3,16 |
W25 | 0,0020 | 1,98 |
Obliczenie momentów:
$$\left( \text{mx} \right)_{i,k} = \frac{- D}{\lambda^{2}}\left\lbrack \left( W_{i + 1,k} - 2W_{i,k} + W_{i - 1,k} \right) + \upsilon\left( W_{i,\ k + 1} - 2W_{i,k} + W_{i,k - 1} \right) \right\rbrack$$
$$\left( \text{my} \right)_{i,k} = \frac{- D}{\lambda^{2}}\left\lbrack \left( W_{i,k + 1} - 2W_{i,k} + W_{i,k - 1} \right) + \upsilon\left( W_{i + 1,\ k} - 2W_{i,k} + W_{i - 1,k} \right) \right\rbrack$$
mx1 | -2,55 |
---|---|
mx2 | 7,17 |
mx3 | 10,02 |
mx4 | 11,23 |
mx5 | 10,61 |
mx6 | -4,75 |
mx7 | 20,85 |
mx8 | 30,10 |
mx9 | 31,55 |
mx10 | 24,86 |
mx11 | -6,65 |
mx12 | 27,54 |
mx13 | 40,32 |
mx14 | 41,71 |
mx15 | 31,55 |
mx16 | -5,56 |
mx17 | 26,63 |
mx18 | 38,60 |
mx19 | 39,78 |
mx20 | 30,02 |
mx21 | -1,97 |
mx22 | 17,57 |
mx23 | 24,67 |
mx24 | 25,43 |
mx25 | 19,70 |
my1 | -2,55 |
---|---|
my2 | -4,75 |
my3 | -6,65 |
my4 | -5,56 |
my5 | -1,97 |
my6 | 7,17 |
my7 | 20,85 |
my8 | 27,54 |
my9 | 26,63 |
my10 | 17,57 |
my11 | 10,02 |
my12 | 30,10 |
my13 | 40,32 |
my14 | 38,60 |
my15 | 24,67 |
my16 | 11,23 |
my17 | 31,55 |
my18 | 41,71 |
my19 | 39,78 |
my20 | 25,43 |
my21 | 10,61 |
my22 | 24,86 |
my23 | 31,55 |
my24 | 30,02 |
my25 | 19,70 |
Obliczenie momentów skręcających:
$$\left( \mathrm{\text{mxy}} \right)_{\mathrm{i,k}}\mathrm{=}\left( \mathrm{\text{myx}} \right)_{\mathrm{i,k}}\mathrm{=}\frac{\mathrm{1 - \upsilon}}{\mathrm{4}\mathrm{\lambda}^{\mathrm{2}}}\mathrm{D}\left\lbrack \mathrm{W}_{\mathrm{i - 1,k - 1}}\mathrm{+}\mathrm{W}_{\mathrm{i + 1,k + 1}}\mathrm{-}\mathrm{W}_{\mathrm{i - 1,k + 1}}\mathrm{-}\mathrm{W}_{\mathrm{i - 1,k + 1}}\mathrm{-}\mathrm{W}_{\mathrm{i + 1,k - 1}} \right\rbrack$$
mxy =myx | kNm |
---|---|
mxy1 =myx1 | -15,02 |
mxy2 =myx2 | -12,57 |
mxy3 =myx3 | -3,38 |
mxy4 =myx4 | 7,89 |
mxy5 =myx5 | 18,40 |
mxy6 =myx6 | -12,57 |
mxy7 =myx7 | -10,78 |
mxy8 =myx8 | -2,84 |
mxy9 =myx9 | 6,93 |
mxy10 =myx10 | 15,42 |
mxy11 =myx11 | -3,38 |
mxy12 =myx12 | -2,84 |
mxy13 =myx13 | -0,67 |
mxy14 =myx14 | 1,94 |
mxy15 =myx15 | 4,05 |
mxy16 =myx16 | 7,89 |
mxy17 =myx17 | 6,93 |
mxy18 =myx18 | 1,94 |
mxy19 =myx19 | -4,29 |
mxy20 =myx20 | -9,83 |
mxy21 =myx21 | 18,40 |
mxy22 =myx22 | 15,42 |
mxy23 =myx23 | 4,05 |
mxy24 =myx24 | -9,83 |
mxy25 =myx25 | -22,46 |
Obliczenie sił tnących:
$$\left( \mathrm{\text{qx}} \right)_{\mathrm{i,k}}\mathrm{= -}\frac{\mathrm{D}}{\mathrm{2}\mathrm{\lambda}^{\mathrm{3}}}\left\lbrack \mathrm{-}\mathrm{W}_{\mathrm{i - 1,k}}\mathrm{+}\mathrm{W}_{\mathrm{i + 2,k}}\mathrm{-}\mathrm{W}_{\mathrm{i - 1,k - 1}}\mathrm{+}\mathrm{W}_{\mathrm{i + 1,k - 1}}\mathrm{-}\mathrm{W}_{\mathrm{i - 1,k + 1}}\mathrm{+}\mathrm{W}_{\mathrm{i + 1,k + 1}}\mathrm{- 4}\left( \mathrm{W}_{\mathrm{i + 1,k}}\mathrm{-}\mathrm{W}_{\mathrm{i - 1,k}} \right) \right\rbrack$$
$$\left( \mathrm{\text{qy}} \right)_{\mathrm{i,k}}\mathrm{= -}\frac{\mathrm{D}}{\mathrm{2}\mathrm{\lambda}^{\mathrm{3}}}\left\lbrack \mathrm{-}\mathrm{W}_{\mathrm{i,\ k - 2}}\mathrm{+}\mathrm{W}_{\mathrm{i,k + 2}}\mathrm{-}\mathrm{W}_{\mathrm{i - 1,k - 1}}\mathrm{+}\mathrm{W}_{\mathrm{i + 1,k - 1}}\mathrm{-}\mathrm{W}_{\mathrm{i + 1,k - 1}}\mathrm{+}\mathrm{W}_{\mathrm{i + 1,k + 1}}\mathrm{- 4}\left( \mathrm{W}_{\mathrm{i,k + 1}}\mathrm{-}\mathrm{W}_{\mathrm{i,k - 1}} \right) \right\rbrack$$
qx | kN | qy | kN | |
---|---|---|---|---|
qx1 | 16,44 | qy1 | -16,44 | |
qx2 | 3,63 | qy2 | -50,86 | |
qx3 | 1,40 | qy3 | -67,09 | |
qx4 | 2,26 | qy4 | -65,28 | |
qx5 | -2,43 | qy5 | -43,98 | |
qx6 | 50,86 | qy6 | -3,63 | |
qx7 | 23,67 | qy7 | -23,67 | |
qx8 | 7,07 | qy8 | -33,12 | |
qx9 | -6,52 | qy9 | -31,99 | |
qx10 | -24,93 | qy10 | -20,39 | |
qx11 | 67,09 | qy11 | -1,40 | |
qx12 | 33,12 | qy12 | -7,07 | |
qx13 | 9,72 | qy13 | -9,72 | |
qx14 | -10,47 | qy14 | -9,16 | |
qx15 | -34,42 | qy15 | -5,58 | |
qx16 | 65,28 | qy16 | -2,26 | |
qx17 | 31,99 | qy17 | 6,52 | |
qx18 | 9,16 | qy18 | 10,47 | |
qx19 | -10,65 | qy19 | 10,65 | |
qx20 | -34,09 | qy20 | 7,21 | |
qx21 | 43,98 | qy21 | 2,43 | |
qx22 | 20,39 | qy22 | 24,93 | |
qx23 | 5,58 | qy23 | 34,42 | |
qx24 | -7,21 | qy24 | 34,09 | |
qx25 | -23,77 | qy25 | 23,77 |
Obliczenia brzegowe:
$$\left( \overset{\overline{}}{\mathrm{\text{qx}}} \right)_{\mathrm{i,k}}\mathrm{= -}\frac{\mathrm{D}}{\mathrm{\lambda}^{\mathrm{3}}}\left\lbrack \mathrm{-}\mathrm{W}_{\mathrm{i - 2,k}}\mathrm{+ 2}\mathrm{W}_{\mathrm{i - 1,k - 1}}\mathrm{+ 2}\mathrm{W}_{\mathrm{i + 1,k}}\mathrm{+}\mathrm{W}_{\mathrm{i + 2,k}}\mathrm{+}\left( \mathrm{2 - \upsilon} \right)\left( \mathrm{-}\mathrm{W}_{\mathrm{i - 1,k - 1}}\mathrm{+ 2}\mathrm{W}_{\mathrm{i - 1,k}}\mathrm{-}\mathrm{W}_{\mathrm{i - 1,k + 1}}\mathrm{+}\mathrm{W}_{\mathrm{i + 1,k - 1}}\mathrm{- 2}\mathrm{W}_{\mathrm{i + 1,k}}\mathrm{+}\mathrm{W}_{\mathrm{i + 1,k + 1}} \right) \right\rbrack$$
$$\left( \overset{\overline{}}{\mathrm{\text{qy}}} \right)_{\mathrm{i,k}}\mathrm{= -}\frac{\mathrm{D}}{\mathrm{\lambda}^{\mathrm{3}}}\left\lbrack \mathrm{-}\mathrm{W}_{\mathrm{i,k - 2}}\mathrm{+ 2}\mathrm{W}_{\mathrm{i,k - 1}}\mathrm{+ 2}\mathrm{W}_{\mathrm{i1,k + 1}}\mathrm{+}\mathrm{W}_{\mathrm{i,k + 2}}\mathrm{+}\left( \mathrm{2 - \upsilon} \right)\left( \mathrm{-}\mathrm{W}_{\mathrm{i - 1,k - 1}}\mathrm{+ 2}\mathrm{W}_{\mathrm{i,k + 1}}\mathrm{-}\mathrm{W}_{\mathrm{i + 1,k - 2}}\mathrm{+}\mathrm{W}_{\mathrm{i - 1,k + 1}}\mathrm{- 2}\mathrm{W}_{\mathrm{i,k + 1}}\mathrm{+}\mathrm{W}_{\mathrm{i + 1,k + 1}} \right) \right\rbrack$$