$\frac{a^{2} + 3ab}{a^{2}b + 3ab}$=$\frac{a(a + 3b)}{a(ab + 3b} = \frac{a + 3b}{ab + 3b}$
$\frac{x^{2} - x - 6}{x^{2} + x - 2} = \frac{\left( x + 2 \right)(x - 3)}{\left( x + 2 \right)(x - 1)} = \frac{x - 3}{x - 1}\ $
$\frac{2x^{3} - 2y^{3}}{5x^{2} - 5y^{2}} = \frac{2\left( x - y \right)(x^{2} + xy + y^{2}}{5\left( x - y \right)(x + y)} = \frac{2(x^{2} + xy + y^{2}}{5(x + y)}$
$\frac{3x^{2}}{2ab^{2}}$=$\frac{24a^{3}x^{2}}{16a^{2}b^{3}}$ 16a4b3=2ab2*8a3b
$\frac{x + y}{x - y} = \frac{x^{2}2xy + y^{2}}{x^{2} - y^{2}}$ x2+2xy+y2(x+y)2=(x+y)(x+y) (x-y)(x+y)=x2-y2
$\frac{2a - b}{a + b} = \frac{8a - 2b^{2}}{4a^{2} + 6ab + 2b^{2}}$ 8a2-2b2=(4a2-b2)=2(2a-b)(2a+b)
2(a+b)(2a+b)=4a2+6ab+2b2
$\frac{a^{2} + 3ab}{a^{2}b + 3ab}$=$\frac{a(a + 3b)}{a(ab + 3b} = \frac{a + 3b}{ab + 3b}$
$\frac{x^{2} - x - 6}{x^{2} + x - 2} = \frac{\left( x + 2 \right)(x - 3)}{\left( x + 2 \right)(x - 1)} = \frac{x - 3}{x - 1}\ $
$\frac{2x^{3} - 2y^{3}}{5x^{2} - 5y^{2}} = \frac{2\left( x - y \right)(x^{2} + xy + y^{2}}{5\left( x - y \right)(x + y)} = \frac{2(x^{2} + xy + y^{2}}{5(x + y)}$
$\frac{3x^{2}}{2ab^{2}}$=$\frac{24a^{3}x^{2}}{16a^{2}b^{3}}$ 16a4b3=2ab2*8a3b
$\frac{x + y}{x - y} = \frac{x^{2}2xy + y^{2}}{x^{2} - y^{2}}$ x2+2xy+y2(x+y)2=(x+y)(x+y) (x-y)(x+y)=x2-y2
$\frac{2a - b}{a + b} = \frac{8a - 2b^{2}}{4a^{2} + 6ab + 2b^{2}}$ 8a2-2b2=(4a2-b2)=2(2a-b)(2a+b)
2(a+b)(2a+b)=4a2+6ab+2b2
$\frac{a^{2} + 3ab}{a^{2}b + 3ab}$=$\frac{a(a + 3b)}{a(ab + 3b} = \frac{a + 3b}{ab + 3b}$
$\frac{x^{2} - x - 6}{x^{2} + x - 2} = \frac{\left( x + 2 \right)(x - 3)}{\left( x + 2 \right)(x - 1)} = \frac{x - 3}{x - 1}\ $
$\frac{2x^{3} - 2y^{3}}{5x^{2} - 5y^{2}} = \frac{2\left( x - y \right)(x^{2} + xy + y^{2}}{5\left( x - y \right)(x + y)} = \frac{2(x^{2} + xy + y^{2}}{5(x + y)}$
$\frac{3x^{2}}{2ab^{2}}$=$\frac{24a^{3}x^{2}}{16a^{2}b^{3}}$ 16a4b3=2ab2*8a3b
$\frac{x + y}{x - y} = \frac{x^{2}2xy + y^{2}}{x^{2} - y^{2}}$ x2+2xy+y2(x+y)2=(x+y)(x+y) (x-y)(x+y)=x2-y2
$\frac{2a - b}{a + b} = \frac{8a - 2b^{2}}{4a^{2} + 6ab + 2b^{2}}$ 8a2-2b2=(4a2-b2)=2(2a-b)(2a+b)
2(a+b)(2a+b)=4a2+6ab+2b2
$\frac{a^{2} + 3ab}{a^{2}b + 3ab}$=$\frac{a(a + 3b)}{a(ab + 3b} = \frac{a + 3b}{ab + 3b}$
$\frac{x^{2} - x - 6}{x^{2} + x - 2} = \frac{\left( x + 2 \right)(x - 3)}{\left( x + 2 \right)(x - 1)} = \frac{x - 3}{x - 1}\ $
$\frac{2x^{3} - 2y^{3}}{5x^{2} - 5y^{2}} = \frac{2\left( x - y \right)(x^{2} + xy + y^{2}}{5\left( x - y \right)(x + y)} = \frac{2(x^{2} + xy + y^{2}}{5(x + y)}$
$\frac{3x^{2}}{2ab^{2}}$=$\frac{24a^{3}x^{2}}{16a^{2}b^{3}}$ 16a4b3=2ab2*8a3b
$\frac{x + y}{x - y} = \frac{x^{2}2xy + y^{2}}{x^{2} - y^{2}}$ x2+2xy+y2(x+y)2=(x+y)(x+y) (x-y)(x+y)=x2-y2
$\frac{2a - b}{a + b} = \frac{8a - 2b^{2}}{4a^{2} + 6ab + 2b^{2}}$ 8a2-2b2=(4a2-b2)=2(2a-b)(2a+b)
2(a+b)(2a+b)=4a2+6ab+2b2