$C_{0} = \frac{I_{\text{zw}}}{\sqrt{3}U_{N}\omega}$; $L = \frac{1}{3\omega^{2}C_{0}}$
$Y_{T} = \frac{I}{100}\ \frac{S_{n}}{U^{2}}$; $B_{T} = \sqrt{{Y_{T}}^{2} - {G_{T}}^{2}}$
$R_{T} = \frac{\Delta P_{\text{Cu}}}{100}\ \frac{U^{2}}{S_{n}}$; $X_{s} = \frac{1,1U^{2}}{S_{\text{k\ }}"}$
$Z_{T} = \frac{\Delta U_{\text{zn}}}{100}\ \frac{U^{2}}{S_{n}}$; $X_{T} = \sqrt{{Z_{T}}^{2} - {R_{T}}^{2}}$
$$I = \frac{S}{\sqrt{3}U_{N}}(\cos{\varphi + j\sin{\varphi)}}$$
$R_{0} = \frac{1}{\text{γ\ s}}$; $I_{k}^{''} = \frac{\text{C\ }U_{N}}{\sqrt{3}\ |Z_{K}|}$; $i_{p} = \sqrt{2}\text{\ ϰ\ }I_{k}''$
$$= 1.02 + 0.98\ e^{- - \frac{3R}{X}}$$
$I_{\text{th}} = \sqrt{m + n\ \ }I_{k}''$; $X_{k} = \frac{U_{N}^{2}}{Q_{K}} X_{d}"$
iβ = uIk″; $X_{C} = \ \frac{{3U}^{2}}{Q_{C}}$
$$I_{1}^{'} = \frac{S_{1} cos\varphi}{\sqrt{3}\ U_{N}};P = S cos\varphi;$$
$$I_{1}^{"} = \frac{S_{1} sin\varphi}{\sqrt{3}\ U_{N}};Q = S sin\varphi;$$
$\delta U = \frac{(PR + QX)}{U}$ ; $\delta U = \sqrt{3}(I^{'}R - I"X)$
$I_{\text{dd}}" = I_{\text{dd}}\sqrt{\frac{\upsilon_{\text{dd}} - \upsilon_{d'}}{\upsilon_{\text{dd}} - \upsilon_{d}}}$
$s_{\text{mm}} = \frac{I_{\text{th}}}{j_{\text{thoh}}}\sqrt{t_{k}}$; $s_{\min} = \frac{2Pl}{\gamma\Delta U_{\text{dop}}U_{N}^{2}}$