Wyliczenie reakcji.
∑Pix=0
RBx=0
∑Mb=0
q × 3l × 1,5l + 2ql × 4l + RBy × 6l +b4ql2 = 0
RCy × 6l = - 4,5ql2 - 8ql2 - 4ql2 /6l
RCy =-2,75ql
∑MC=0
4ql2 - 2ql × 2l + q × 3l ×7,5l – RBy × 6l =0
RBy × 6l = 4ql2 – 4ql2 × 22,5ql2 / 6l
RBy = 3,75ql
Projektowanie przekroju poprzecznego belki.
A1 = 16k2
A2 = 12k2
A3 = 8k2
A =36k2
Sy = 16k2 × 9k + 12k2 ×5k + 8k2 × 1k = 212k3
$$z_{0} = \frac{S_{y}}{A} = \frac{{212k}^{3}}{{36k}^{2}} = 5,89k$$
$$I_{Y0} = \frac{8k \times \left( 2k \right)^{3}}{12} + \frac{2k \times \left( 6k \right)^{3}}{12} + \frac{4k \times \left( 2k \right)^{3}}{12} = 44k^{4}$$
$$W_{y}^{g} = \frac{{44k}^{4}}{4,11k} = 10,71k^{3}$$
$$W_{y}^{d} = \frac{{44k}^{4}}{5,89k} = 7,47k^{3}$$
σmax ≤ R
$$\sigma_{\max} = \frac{M_{\max}}{W_{\min}}$$
Mmax= 4,5ql2 = 4,5×6kN × (4m)2 = 432kNm
$$\sigma_{\max} = \frac{432kNm}{7,47k^{3}} \leq 175MPa$$
$$\frac{43200kNcm}{7,47k^{3}} \leq 17,5\frac{\text{kN}}{\text{cm}^{2}} \rightarrow k^{3} \geq \frac{43200}{131,075}\text{\ cm}$$
k ≥ 6,91cm
τmax ≤ Rt
$$\tau_{\max} = \frac{T_{\max} \times S_{Y(x)}}{b \times I_{Y0}}$$
Tmax =3ql = 3×6kN × 4m =72kN
$$\tau_{\max} = \frac{72kN \times \left( 8k \times 2k \times 3,11k + 2k \times 2,11k \times 1,055k \right)}{2k \times 44k^{4}} \leq 105MPa \rightarrow$$
$$\tau_{\max} = \ \frac{3903,2712kNk^{3}}{2k \times 44k^{4}} \leq 10,5\frac{\text{kN}}{\text{cm}^{2}}\ \rightarrow k^{3} \geq \frac{3903,2712}{2 \times 44 \times 10,5}\text{cm}$$
k ≥ 1, 62cm
Przyjęto k= 7cm
$$\sigma_{\max}^{g} = \frac{432kNm}{10,71 \times \left( 7cm \right)^{3}} = \frac{43200kNcm}{3673,53\text{cm}^{3}} = 11,76\frac{\text{kN}}{\text{cm}^{2}} = 117,6MPa$$
$$\sigma_{\max}^{d} = \frac{432kNm}{7,47 \times \left( 7cm \right)^{3}} = \frac{43200kNcm}{2562,21\text{cm}^{3}} = 16,86\frac{\text{kN}}{\text{cm}^{2}} = 168,6MPa$$
τmax1 = τmax7 = 0
$$\tau_{\max}^{2} = \frac{72kN \times \left( 8k \times 2k \times 3,11k \right)}{8k \times 44k^{4}} = 0,21\frac{\text{kN}}{\text{cm}^{2}} = 2,1MPa$$
$$\tau_{\max}^{3} = \frac{72kN \times \left( 8k \times 2k \times 3,11k \right)}{2k \times 44k^{4}} = 0,83\frac{\text{kN}}{\text{cm}^{2}} = 8,3MPa$$
$$\tau_{\max}^{4} = \frac{72kN \times \left( 8k \times 2k \times 3,11k + 2k \times 2,11k \times 1,055k \right)}{2k \times 44k^{4}} = \frac{72kN \times \left( 49,76 + 4,4521 \right) \times \left( 7cm \right)^{3}}{88 \times \left( 7cm \right)^{5}} = \frac{72kN \times 54,2121}{88 \times \left( 7cm \right)^{2}} = \frac{3903,2712kN}{4312} = 0,91\frac{\text{kN}}{\text{cm}^{2}} = 9,1MPa$$
$$\tau_{\max}^{5} = \frac{72KN \times \left( 4k \times 2k \times 4,89 \right)}{2k \times 44k} = 0,65\frac{\text{kN}}{\text{cm}^{2}} = 6,5MPa$$
$$\tau_{\max}^{6} = \frac{72KN \times \left( 4k \times 2k \times 4,89 \right)}{4k \times 44k} = 0,33\frac{\text{kN}}{\text{cm}^{2}} = 3,3MPa$$
Wyznaczenie ugięcia i kąta obrotu w punkcie A.
φA = ? WA = ?
$$\varphi_{A} = \frac{1}{\text{EJy}} \times \left( \frac{1}{2} \times 3\text{ql}^{2} \times 4l \times \frac{7}{30} + 1,5\text{ql}^{2} \times 4l \times \frac{7}{20} + \frac{1}{2} \times 5,5\text{ql}^{2} \times 2l \times \frac{1}{5} - 4\text{ql}^{2} \times 2l \times \frac{3}{20} \right)$$
$$\varphi_{A} = \frac{1}{\text{EJy}} \times \left( \frac{7}{5} + \frac{21}{10} + \frac{11}{10} - \frac{6}{5} \right)\text{ql}^{3}$$
$$\varphi_{A} = \frac{3,4\text{ql}^{3}}{\text{EJy}}$$
$$W_{A} = \frac{1}{\text{EJy}} \times \left( \frac{1}{2} \times 3\text{ql}^{2} \times 4l \times \frac{13}{30} + 1,5\text{ql}^{2} \times 4l \times \frac{13}{20} + \frac{1}{2} \times 5,5\text{ql}^{2} \times 2l \times \frac{26}{30} - 4\text{ql}^{2} \times 2l \times \frac{13}{20} \right)$$
$$W_{A} = \frac{1}{\text{EJy}} \times \left( \frac{13}{5} + \frac{39}{10} + \frac{143}{30} - \frac{26}{5} \right)\text{ql}^{3}$$
$$W_{A} = \frac{6,1\text{ql}^{3}}{\text{EJy}}$$