OBLICZENIE REAKCJI:
ΣMA = 0 $+ 4*2,5*\left( 3 + \frac{5}{4} \right) - 30 - \frac{15}{\sqrt{10}}*7 - V_{E}*6 + \frac{45}{\sqrt{10}}*3 = 0$
$$V_{E} = \frac{\frac{85}{2} - 30 - \frac{105}{\sqrt{10}} + \frac{135}{\sqrt{10}}}{6} = \frac{25 + 6\sqrt{10}}{12} \approx 3,6645$$
ΣY = 0 $+ V_{A} + V_{E} - 4*2,5 + \frac{15}{\sqrt{10}} = 0$
$$V_{A} = - \frac{25 + 6\sqrt{10}}{12} + 10 - \frac{15}{\sqrt{10}} = \frac{95 - 24\sqrt{10}}{12} \approx 1,5921$$
ΣX = 0 +$H_{A} - \frac{45}{\sqrt{10}} = 0$
$$H_{A} = \frac{45}{\sqrt{10}} = \frac{45\sqrt{10}}{10} = \frac{9\sqrt{10}}{2} \approx 14,2302$$
SPR.
ΣMB = 0 $+ 4*2,5*\frac{5}{4} - 30 + V_{A}*3 + \frac{45}{\sqrt{10}}*3 - \frac{15}{\sqrt{10}}*4 - V_{E}*3 = 0$
$$\frac{50}{4} - 30 + \frac{95 - 24\sqrt{10}}{4} + \frac{135}{\sqrt{10}} - \frac{60}{\sqrt{10}} - \frac{25 + 6\sqrt{10}}{4} = 0$$
0 = 0
RÓWNANIA DO MOMENTÓW ZGINAJĄCYCH, SIŁ TNĄCYCH I NORMALNYCH:
x1 ∈ <0, 3> M(x1) = +VA * x
M(0) = 0
$$M\left( 3 \right) = {+ V}_{A}*3 = \frac{95 - 24\sqrt{10}}{12}*3 = \frac{95 - 24\sqrt{10}}{4} \approx 4,7763$$
$$T\left( x1 \right) = {+ V}_{A} = \frac{95 - 24\sqrt{10}}{12} \approx 1,5921$$
$$N\left( x1 \right) = - H_{A} = - \frac{9\sqrt{10}}{2} \approx - 14,2302$$
x2 ∈ <0, 3> M(x2) = 0
T(x2) = 0
N(x2) = 0
x3 ∈ <0, 3> M(x3) = −30
T(x3) = 0
N(x3) = 0
x4 ∈ <0, 2.5> $M\left( x4 \right) = + V_{A}*\left( 3 + x \right) - 30 - 4*\frac{x^{2}}{2}$
$$M\left( 0 \right) = \frac{95 - 24\sqrt{10}}{4} - 30 = \frac{- 25 - 24\sqrt{10}}{4} \approx - 25,2237$$
$$M\left( 2,5 \right) = \frac{95 - 24\sqrt{10}}{12}*5,5 - 30 - 4*\frac{{2,5}^{2}}{2} \approx - 33,7434$$
T(x4) = +VA − 4x
$$T\left( 0 \right) = \frac{95 - 24\sqrt{10}}{12} \approx 1,5921$$
$$T\left( 2,5 \right) = \frac{95 - 24\sqrt{10}}{12} - 10 = \frac{- 25 - 24\sqrt{10}}{12} \approx - 8,4079$$
$$N\left( x4 \right) = - H_{A} = - \frac{9\sqrt{10}}{2} \approx - 14,2302$$
x5 ∈ <0, 2.5> $M\left( x5 \right) = + V_{A}*\left( 5,5 + x \right) - 30 - 4*2,5*\left( \frac{5}{4} + x \right)$
$$M\left( 0 \right) = \frac{95 - 24\sqrt{10}}{12}*\frac{11}{2} - 30 - 10*\frac{5}{4} \approx 33,7434$$
$$M\left( 2,5 \right) = \frac{95 - 24\sqrt{10}}{12}*8 - 30 - 10*\left( \frac{5}{4} + 2,5 \right) = \frac{- 25 - 96\sqrt{10}}{6} \approx - 54,7631$$
$$T\left( x5 \right) = + V_{A} - 4*2,5 = \frac{95 - 24\sqrt{10}}{12} - 10 = \frac{- 25 - 24\sqrt{10}}{12} \approx - 8,4079$$
$$N\left( x5 \right) = - H_{A} = - \frac{9\sqrt{10}}{2} \approx - 14,2302$$
$x_{6} \in < 0,\sqrt{10} >$ M(x6) = −VE * sin ∝ *x
M(0) = 0
$$M\left( \sqrt{10} \right) = - \frac{25 + 6\sqrt{10}}{12}*\frac{1}{\sqrt{10}}*\sqrt{10} = \frac{- 25 - 6\sqrt{10}}{12} \approx - 3,6645$$
$${T\left( x6 \right) = V_{E}*sin \propto = \frac{25 + 6\sqrt{10}}{12}*\frac{1}{\sqrt{10}} = \frac{12 + 5\sqrt{10}}{24} \approx 1,1588\backslash n}{N\left( x6 \right) = - V_{E}*cos \propto = - \frac{25 + 6\sqrt{10}}{12}*\frac{3}{\sqrt{10}} = - \frac{12 + 5\sqrt{10}}{8} \approx - 3,4764}$$
$x_{7} \in < 0,\sqrt{10} >$ $M\left( x7 \right) = {- V}_{E}*sin \propto - 15*x = - \frac{25 + 6\sqrt{10}}{12}*\frac{1}{\sqrt{10}}*\left( \sqrt{10} + x \right) - 15*x$
$$M\left( 0 \right) = \frac{- 25 - 6\sqrt{10}}{12} \approx - 3,6645$$
$$M\left( \sqrt{10} \right) = - \frac{25 + 6\sqrt{10}}{12\sqrt{10}}*2\sqrt{10} - 15\sqrt{10} = \frac{- 25 - 96\sqrt{10}}{6} \approx - 54,7631$$
$$T\left( x7 \right) = V_{E}*sin \propto + 15 = \frac{25 + 6\sqrt{10}}{12}*\frac{1}{\sqrt{10}} + 15 = \frac{372 + 5\sqrt{10}}{24} \approx 16,1588$$
$$N\left( x7 \right) = - V_{E}*cos \propto = - \frac{25 + 6\sqrt{10}}{12}*\frac{3}{\sqrt{10}} = - \frac{12 + 5\sqrt{10}}{8} \approx - 3,4764$$
OBLICZENIE EKSTREMUM W PRZEDZIALE X4:
T(x4) = 0
+VA − 4x = 0
$x = \frac{V_{A}}{4}$
$$x = \frac{95 - 24\sqrt{10}}{48} \approx 0,3980$$
$$M\left( x4 = \frac{95 - 24\sqrt{10}}{48} \right) = + V_{A}*\left( 3 + x \right) - 30 - 4*\frac{x^{2}}{2}$$
$M\left( x4 \right) = + V_{A}*\left( 3 + \frac{95 - 24\sqrt{10}}{48} \right) - 30 - 4*\frac{\frac{95 - 24\sqrt{10}}{48}^{2}}{2}$
M(x4) = −24, 9068 EKSTREMUM MINIMALNE
OBLICZENIE REAKCJI:
ΣMA = 0 −xD1 * 3 − VE * 6 = 0
$$V_{E} = \frac{- 3}{6} = - \frac{1}{2}$$
ΣX = 0 HA = 0
ΣY = 0 VA + VE + 1 = 0
$$V_{A} = - 1 + \frac{1}{2} = - \frac{1}{2}$$
RÓWNANIA DO MOMENTÓW ZGINAJĄCYCH, SIŁ TNĄCYCH I NORMALNYCH:
x1 ∈ <0, 3> M(x1) = +VA * x
M(0) = 0
$$M\left( 3 \right) = {+ V}_{A}*3 = - \frac{1}{2}*3 = - \frac{3}{2}$$
$$T\left( x1 \right) = + V_{A} = - \frac{1}{2}$$
N(x1) = −HA = 0
x2 ∈ <0, 6> M(x2) = 0
T(x2) = 0
N(x2) = −1
x3 ∈ <0, 5> M(x3) = +VA * (3+x) + 1 * x
$$M\left( 0 \right) = - \frac{1}{2}*3 = - \frac{3}{2}\ $$
$$M\left( 5 \right) = - \frac{1}{2}*8 + 1*5 = - 4 + 5 = 1$$
$$T\left( x3 \right) = {+ V}_{A} + 1 = - \frac{1}{2} + 1 = \frac{1}{2}$$
N(x3) = 0
$x_{4} \in < 0,2\sqrt{10} >$ $M\left( x4 \right) = {- V}_{E}*sin\alpha*x = \frac{1}{2}*\frac{1}{\sqrt{10}}*x$
M(0) = 0
$$M\left( 2\sqrt{10} \right) = \frac{1}{2\sqrt{10}}*2\sqrt{10} = 1$$
$$T\left( x4 \right) = V_{E}*sin\alpha = - \frac{1}{2}*\frac{1}{\sqrt{10}} = \frac{- \sqrt{10}}{20} \approx - 0,1581$$
$$N\left( x4 \right) = {- V}_{E}*cos\alpha = + \frac{1}{2}*\frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{20} \approx 0,4743$$
OBLICZENIE REAKCJI:
ΣMA = 0 −xD2 * 6 − VE * 6 = 0
$$V_{E} = \frac{- 6}{6} = - 1$$
ΣX = 0 HA + 1 = 0
HA = −1
ΣY = 0 VA + VE = 0
VA = 1
RÓWNANIA DO MOMENTÓW ZGINAJĄCYCH, SIŁ TNĄCYCH I NORMALNYCH:
x1 ∈ <0, 3> M(x1) = +VA * x
M(0) = 0
M(3) = +VA * 3 = 1 * 3 = 3
T(x1) = +VA = 1
N(x1) = −HA = 1
x2 ∈ <0, 6> M(x2) = −1 * x
M(0) = 0
M(6) = −6
T(x2) = −1
N(x2) = 0
x3 ∈ <0, 5> M(x3) = +VA * (3+x) − 1 * 6
M(0) = +3 − 6 = −3
M(5) = +8 − 6 = 2
T(x3) = +VA = 1
N(x3) = −HA − 1 = +1 − 1 = 0
$x_{4} \in < 0,2\sqrt{10} >$ $M\left( x4 \right) = {- V}_{E}*sin\alpha*x = 1*\frac{1}{\sqrt{10}}*x$
M(0) = 0
$$M\left( 2\sqrt{10} \right) = \frac{1}{\sqrt{10}}*2\sqrt{10} = 2$$
$$T\left( x4 \right) = V_{E}*sin\alpha = - 1*\frac{1}{\sqrt{10}} = \frac{- \sqrt{10}}{10} \approx - 0,3162$$
$$N\left( x4 \right) = - V_{E}*cos\alpha = + 1*\frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10} \approx 0,9487$$
OBLICZENIE REAKCJI:
ΣMA = 0 +xD3 − VE * 6 = 0
$$V_{E} = \frac{1}{6}$$
ΣX = 0 HA = 0
ΣY = 0 VA + VE = 0
$$V_{A} = - \frac{1}{6}$$
RÓWNANIA DO MOMENTÓW ZGINAJĄCYCH, SIŁ TNĄCYCH I NORMALNYCH:
x1 ∈ <0, 3> M(x1) = +VA * x
M(0) = 0
$$M\left( 3 \right) = {+ V}_{A}*3 = - \frac{1}{6}*3 = - \frac{1}{2}$$
$$T\left( x1 \right) = + V_{A} = - \frac{1}{6}$$
N(x1) = −HA = 0
x2 ∈ <0, 6> M(x2) = +1
T(x2) = 0
N(x2) = 0
x3 ∈ <0, 5> M(x3) = +VA * (3+x) + 1
$$M\left( 0 \right) = - \frac{1}{6}*3 + 1 = \frac{1}{2}$$
$$M\left( 5 \right) = - \frac{1}{6}*8 + 1 = - \frac{8}{6} + 1 = - \frac{4}{3} + 1 = - \frac{1}{3}$$
$$T\left( x3 \right) = + V_{A} = - \frac{1}{6}$$
N(x3) = −HA = 0
$x_{4} \in < 0,2\sqrt{10} >$ $M\left( x4 \right) = {- V}_{E}*sin\alpha*x = - \frac{1}{6}*\frac{1}{\sqrt{10}}*x$
M(0) = 0
$$M\left( 2\sqrt{10} \right) = - \frac{1}{6\sqrt{10}}*2\sqrt{10} = - \frac{1}{3}$$
$$T\left( x4 \right) = V_{E}*sin\alpha = \frac{1}{6}*\frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{60} \approx 0,0527$$
$$N\left( x4 \right) = - V_{E}*cos\alpha = - \frac{1}{6}*\frac{3}{\sqrt{10}} = - \frac{\sqrt{10}}{20} \approx - 0,1581$$