$B_{(\overset{\overline{}}{x}\ )} = \frac{u_{\alpha}*\sigma}{\overset{\overline{}}{x}\sqrt{n}}*100$
$B_{\left( x \right)} = \ \frac{t_{\alpha}*\ S_{\left( x \right)}}{\overset{\overline{}}{x}\sqrt{n - 1}}*100$
$B_{(x)} = \frac{u_{\alpha}*S_{(x)}}{\overset{\overline{}}{x}\sqrt{n}}*100$
$B_{(p)} = \frac{u_{\alpha}}{\frac{m}{n}}\ \sqrt{\frac{\frac{m}{n}\left( 1 - \frac{m}{n} \right)}{n}}*100$
$P = \left\{ \frac{S_{(x)}}{1 + \frac{u_{\alpha}}{\sqrt{2n}}} < \ \sigma < \right.\ \left. \ \frac{S_{(x)}}{1 - \frac{u_{\alpha}}{\sqrt{2n}}} \right\} = 1 - \alpha$ $B_{\alpha} = \frac{u_{\alpha}}{\sqrt{2n}}*100$ $P\left\{ \frac{\left( n - 1 \right)*S_{\left( x \right)}^{2}}{C_{2}} < \sigma^{2} < \frac{\left( n - 1 \right)*S_{\left( x \right)}^{2}}{C_{1}} \right\} = 1 - \alpha$
$$\left\{ r_{\left( \text{xy} \right)} - u_{\alpha}*\frac{1 - r_{\left( \text{xy} \right)}^{2}}{\sqrt{n}} < \rho < r_{\left( \text{xy} \right)} + u_{\alpha}*\frac{1 - r_{\left( \text{xy} \right)}^{2}}{\sqrt{n}} \right\} = 1 - \alpha$$
χ2 = n S²(x)
|
---|
u = √2 χ2 _ √ 2n – 3 |
---|
F = S1² S2² |
---|
$t = \frac{r_{s}}{\sqrt{\frac{1 - r_{s}^{2}}{n - 2}}}$ $u = r_{s}*\sqrt{n - 1}$