$\sum_{}^{}{Mo:\ S_{2}r - M_{1} - S_{1}r = 0}$
S2>S1 , więc S2 = S1eαμ
$\sum_{}^{}{M_{A}:\ S_{1} \times 2r} - P \times 3r = 0$
$\sum_{}^{}\text{Px}$: −T1 + S1cosα = 0,
$\sum_{}^{}{\text{Py}:\ N_{1} - Q + S_{1}\text{sinα} = 0}$
$\sum_{}^{}{Px:T_{1} + T_{2} = 0}$
$\sum_{}^{}{Py:\ N_{2} - N_{1} - G = 0}$
T1 = N1 × μ
T2 = N2 × μ
ΣPx: T2 + T1sinα – N2cosα = 0
ΣPy: N2 – G – T1cosα – N1sinα = 0