Q = 15kN
l = 160mm
E = 2, 06 * 105
H = 50mm
|
Dobieram stal E295
kc = 165MPa
kg = 162 MPa
ks = 90MPa
kt = 87MPa
Pdop = 109 MPa
Śruba jest ściskana dlatego jej średnicę wyznaczono ze wzoru Eulera przy założeniu λ ≥ λgr
Sposób podparcia śruby odpowiada wg tabeli 5.8 (Mazanek), więc współczynnik długości swobodnej śruby uw = 1
Długość śruby l = lmax + H
l = 160 + 50 = 200mm
$$d_{3} = \sqrt[4]{\frac{64Q{u_{w}}^{2}l^{2}x_{w}}{\pi^{3}E}} = d_{3} = \sqrt[4]{\frac{64*15*10^{3}*1^{2}*210^{2}*3}{\pi^{3}*2,06*10^{5}}} = 11,87$$
|
uw = 1
xw = 3
d3 ≥ 11, 87
l = 210mm
|
d = 24mm
P = 3mm
d2 = 22, 5mm
d3 = 20, 5mm
D1 = 21mm
α = 30
z = 1
|

|
Tr = 24x3
|
l = 1
μw = 1
σ0 = 335MPa
b = 0, 35MPa
λgr = 90
|
$$\lambda = \frac{\mu_{w}l}{i_{\min}} = \frac{\mu_{w}l}{0,25d_{3}} = \frac{1*210}{0,25*20,5} = 40,97$$
Wyboczenie jest sprężysto-plastyczne λ < λgr 40, 97 < 90
σkr = σ0 − bλgr
σkr = 335 * 106 − 0, 35 * 106 * 90 = 303, 5MPa
|
λ = 40, 97
σkr = 303, 5MPa
|
Q = 15kN
d3 = 20, 5mm
|
$$\sigma_{c} = \frac{Q}{\frac{\pi}{4}*d_{3}^{2}} = \frac{15*10^{3}}{\frac{\pi}{4}*{20,5}^{2}} = 45,4MPa$$
|
σc = 45, 4MPa
|
Dane |
Obliczenia |
Wyniki |
σkr = 303, 5MPa
σc = 45, 4MPa
|
$$x_{w} = \frac{\sigma_{\text{kr}}}{\sigma_{c}} = \frac{303,5}{45,4} = 6,68$$
|
xw = 6, 68
|
Ph = P = 3
d2 = 22, 5mm
|
$$\gamma = arc\ tg\frac{P_{h}}{\pi d_{2}} = arc\ tg\frac{3}{\pi*22,5} = 242'$$
|
γ = 242′
|
μ = 0, 15
α = 30
|
$$p^{'} = arc\ tg\frac{\mu}{\cos\frac{\alpha}{2}} = arc\ tg\ \frac{0,15}{\cos\frac{30}{2}} = 944'$$
|
p′ = 944′
|
γ = 242′
p′ = 944′
|
γ < p′
242′<944′ |
|
Q = 15kN
d2 = 22, 5mm
γ = 2, 7
p = 9, 74
|
$$M_{s} = \frac{1}{2}Qd_{2}\text{\ tg}\left( \gamma + p^{'} \right) = \frac{1}{2}*15*10^{3}*22,5*tg\left( 2,7 + 9,74 \right) = 33401\ N*mm$$
|
Ms = 33401 Nmm
|
dk = 12mm
μt = 0, 12
|

$$M_{t} = \frac{1}{2}Q\mu_{t}d_{k} = \frac{1}{2}*15*10^{3}*0,12*12 = 10800\ N*mm$$
Mc = Ms + Mt = 33401 + 10800 = 44201 N * mm
|
Mt = 10800Nmm
Mc = 44201Nmm
|
d3 = 20, 5mm
|
Wo ≅ 0, 2d33 = 0, 2 * 20, 53 = 1723mm3
|
Wo = 1723mm3
|
Ms = 33401 Nmm
|
$$T_{s} = \frac{M_{s}}{W_{o}} = \frac{33,4*10^{3}}{1723} = 19,38MPa$$
|
Ts = 19, 38MPa
|
Dane |
Obliczenia |
Wyniki |
σc = 45, 4MPa
kr = 165MPa
ks = 90 * 106
Ts = 19, 38MPa
|
$$\sigma_{z} = \sqrt{\sigma_{c}^{2} + \left( \frac{k_{r}}{k_{s}}T_{s} \right)^{2}} = \sqrt{{45,4}^{2} + \left( \frac{165*10^{6}}{90*10^{6}}*19,38 \right)^{2}} = 57,7MPa\ $$
65, 4MPa < kc = kr = 165MPa
|
σz = 57, 7MPa
|
Q = 15kN
Ph = P = 3
d = 24mm
D1 = 21mm
pdop = 12MPa
|
$$N \geq \frac{QP_{h}}{\frac{\pi}{4}\left( d^{2} - D_{1}^{2} \right)p_{\text{dop}}z} = \frac{15*10^{3}*3}{\frac{\pi}{4}*\left( 24^{2} - 21^{2} \right)*12*1} = 35\ mm$$
|
N = 35mm
|
|
N = (1,5÷2)d
$$\frac{N}{d} = \left( 1,5 \div 2 \right)$$
$$\frac{40}{20} = \left( 1,5 \div 2 \right)$$
2 = (1, 5 ÷ 2)
|
|
Mc = 44201 Nmm
kgj = 95MPa
Fr = 250kN
|
$$R = \frac{M_{c}}{F_{r}} = \frac{44201}{250} = 177mm$$
Obliczamy średnicę drążka
$$d_{d} \geq \sqrt[3]{\frac{M_{c}}{0,1k_{g}}} = \sqrt[3]{\frac{44201}{0,1*950}} = 7,7mm$$
Przyjmuję dd = 16mm
$$\eta_{g} = \frac{\text{tg\ γ}}{\text{tg\ }\left( \gamma + \rho \right)} = \frac{tg\ 2,7}{tg\ (2,7 + 9,73)}0,21 = 21\%$$
$$\eta_{sc} = \frac{\text{QH}}{\text{Mφ}} = \frac{1500*0,5}{340*2*\pi} = 0,35 = 35\%$$
|
R = 177mm
dd = 16mm
ηg = 21%
ηsc = 35%
|
Dane |
Obliczenia |
Wyniki |
kc = 165MPa
kg = 162MPa
ks = 90MPa
kt = 87MPa
pdop = 109MPa
Q = 15kN
Dmax = 250mm
a = 30mm
H = 50mm
|
Na materiał belki przyjmuję stal E295
$$M_{g_{L - L}} = \frac{Q}{2}*\frac{D_{\max} + a}{2} = \frac{15*10^{3}}{2}*\frac{250 + 30}{2} = 1050000N*mm$$
Dmax − rozstaw lap
a − szerokosc lap zakladam 30mm

|
MgL − L = 1050000N * mm
|
Mg = 1050000N * mm
H = 50mm
kg = 162MPa
|
$$\sigma_{g_{L - L}} = \frac{M_{g_{L - L}}}{W_{x_{L - L}}} \leq k_{g}$$
Gdze:
$$W_{x_{L - L}} = \frac{\left( D_{n} + D \right)H^{2}}{6}$$
Po podstawieniu:
$$D_{n} \geq \frac{6M_{g_{L - L}}}{k_{g}H^{2}} + D = \frac{6*1050000}{162*50^{2}} = 15,5mm$$
Przyjmuję Dn = 20mm |
Dn = 20mm
|
Q = 15kN
Dmax = 250mm
a = 30mm
Dn = 20mm
|

$$M_{g_{D - D}} = \frac{Q}{2}*\frac{D_{\max} + a - \ D_{n}}{2} = \frac{15*10^{3}}{2}*\frac{250 + 30 - 20}{2} = 975000N*mm$$
|
MgD − D = 975000N * mm
|
MgD − D = 975000N * mm
kg = 162MPa
H = 50mm
|

$$\sigma_{g_{D - D}} = \frac{M_{g_{D - D}}}{W_{x_{D - D}}} \leq k_{g}$$
$$W_{x_{D - D}} = \frac{\text{bH}^{2}}{6}$$
Po przekształceniu:
$$b \geq \frac{6M_{g_{D - D}}}{k_{g}H^{2}} = \frac{6*975000}{162*50^{2}} = 14,4mm$$
Przyjmuję b = 15mm |
b = 15mm
|
a = 30mm
Q = 15kN
f = 30mm
kr = 165MPa
a = 30mm
Q = 15kN
f = 30mm
kr = 165MPa
|
Przekrój I-I jest narażony na rozciąganie
σz = σg + σr ≤ kr
$$\sigma_{g} = \frac{M_{g}}{W_{x}} = \frac{0,5Q\left( f + 0,50 \right)}{\frac{ca^{2}}{6}}$$
Zakładamy, że f = 30mm
$$\sigma_{r} = \frac{0,5Q}{ca^{2}}$$
$$\sigma_{z} = \sigma_{g} + \sigma_{r} = \frac{0,5*15*10^{3}*(30 + 0,5*30)}{\frac{c*30^{2}}{6}} + \frac{0,5*15*10^{3}}{30c} = \frac{2500}{c} \leq k_{r} = 165MPa$$
$$c \geq \frac{2500}{165} = 15,15mm$$
Zakładamy c = 20mm |
c = 20mm
c = 20mm
|
Q = 15kN
f = 30mm
c = 20mm
kg = 162MPa
|
$$\sigma_{g} = \frac{M_{g}}{W_{x}} = \frac{0,5Q*f*6}{c*e^{2}} \leq k_{g}$$
$$e \geq \sqrt{\frac{3Q*f}{c*k_{g}}} = \sqrt{\frac{3*{15*10}^{3}*30}{20*162}} = 20,4mm$$
Przyjmuję e = 25mm |
e = 25mm
|
kt = 87MPa
Q = 15kN
a = 30mm
b = 15mm
|
$$T_{t} = \frac{0,5Q}{2ag} \leq k_{t}$$
$$g \geq \frac{0,5Q}{2ak_{t}} = \frac{{15*10}^{3}*0,5}{2*30*87} = 1,44mm$$
k = b + 2g = 15 + 10 = 20mm
Ze względów konstrukcyjnych przyjmuję g = 5mm oraz k = 25mm.
|
g = 5mm
k = 25mm
|
Q = 15kN
c = 20mm
kc = 165MPa
f = 30mm
|
$$p = \frac{0,5Q}{c*0,2*f} \leq k_{0}$$
Zakładamy k0 = 0, 8kc = 0, 8 * 165 = 132MPa
$$p = \frac{{0,5*15*10}^{3}}{20*0,2*30} = 62,5MPa$$
p = 62, 5Mpa < k0 = 132Mpa
|
p = 62, 5MPa
k0 = 132Mpa
|