R Normalny

Probability Distributions


Probability Distributions

-------------------------


Distribution: Normal


Parameters: Mean Std. dev.

Dist. 1 0 1

Dist. 2 0 2

Dist. 3 4 1

Dist. 4 4 2




The StatAdvisor

---------------

This procedure allows you to analyze any of 24 probability

distributions. Currently, the normal distribution has been selected.

You can create various plots, compute tail areas and critical values,

and generate random numbers from the selected distribution. Up to

five sets of parameters can be specified by pressing the alternate

mouse button and selecting Analysis Options.





Cumulative Distribution

-----------------------


Distribution: Normal


Lower Tail Area (<)

Variable Dist. 1 Dist. 2 Dist. 3 Dist. 4

0 0,5 0,5 0,000031686 0,02275

2 0,97725 0,841345 0,02275 0,158655


Probability Density

Variable Dist. 1 Dist. 2 Dist. 3 Dist. 4

0 0,398942 0,199471 0,00013383 0,0269955

2 0,053991 0,120985 0,053991 0,120985


Upper Tail Area (>)

Variable Dist. 1 Dist. 2 Dist. 3 Dist. 4

0 0,5 0,5 0,999968 0,97725

2 0,02275 0,158655 0,97725 0,841345




The StatAdvisor

---------------

This pane evaluates the cumulative normal distribution. It will

calculate the tail areas for up to 5 critical values of the

distribution. It will also calculate the probability density or mass

function. For example, the output indicates that, for the first

distribution specified, the probability of obtaining a value less than

0,0 is 0,5. Also, the probability of obtaining a value greater than

0,0 is 0,5. The height of the probability density function at 0,0 is

0,398942.




Inverse CDF

-----------


Distribution: Normal


CDF Dist. 1 Dist. 2 Dist. 3 Dist. 4

0,01 -2,32635 -4,6527 1,67365 -0,652704

0,05 -1,64486 -3,28971 2,35514 0,710286

0,95 1,64486 3,28971 5,64486 7,28971

0,99 2,32635 4,6527 6,32635 8,6527




The StatAdvisor

---------------

This pane finds critical values for the normal distribution. You

may specify up to 5 five tail areas. The critical value is defined as

the largest value for the normal distribution such that the

probability of not exceeding that value does not exceed the area

specified. For example, the output indicates that, for the first

distribution specified, -2,32635 is the largest value such that the

probability of not exceeding -2,32635 is less than or equal to 0,01.







Wyszukiwarka

Podobne podstrony:
02b Rozkład normalnyid 4039 ppt
bd normalizacja
2a Normalizacja
ODCHYŁKI NORMALNE Tablice
CERA NORMALNA
Normalizacja
Ceowniki Normalne
nowotwory złośliwe, Download, - ▧ Normalne, higiena
sciaga format normalny
Normalizacja kolos 1
Postać normalna (bazy danych)
L komunikacyjny przekroj normalny na luku 1 Model (1
GW Pole normalne scZ
NORMALIZACJA I CERTYFIKACJA SYSTEMÓW I WYROBÓW(1)
DUL, Przekroje normalny na łuku
Egzaminu przedmiotu Normalizacja, Studia, STUDIA PRACE ŚCIĄGI SKRYPTY