spr10 teoria, fizyczna, chemia fizyczna, Fizyczna, laborki


pH-metr - urządzenie służące do pomiaru pH analizowanych substancji chemicznych.

Większość pH-metrów to w istocie mierniki potencjału, w których pH ustala się na podstawie pomiaru siły elektromotorycznej (SEM) ogniwa utworzonego z elektrody wskaźnikowej (zanurzonej w roztworze badanym) i elektrody porównawczej (zanurzonej w roztworze wzorcowym o znanym pH). Ogniwa te są zwykle połączone z elektronicznym woltomierzem o dużej czułości, który automatycznie przelicza zmierzony SEM ogniwa na skalę pH, zgodnie z dostosowanym do warunków pomiaru równaniem Nernsta[1]

0x01 graphic

gdzie: E = zmierzony SEM ogniwa, E0 = potencjał elektrody wzorcowej, R = stała gazowa, T = temperatura w skali Kelvina, F = stała Faradaya

Bardziej złożone pH-metry są dodatkowo zaopatrzone w termometry, gdyż jak wynika z wyżej przedstawionego wzoru temperatura ma wpływ na pomiar. Prostsze pH-metry są zwykle wyskalowane na warunki standardowe (temperatura 25 °C) i gdy pomiaru dokonuje się w zbliżonych warunkach (20-30 °C) błąd pomiaru wynikający ze zmiany temperatury nie jest bardzo istotny.

Podstawą potencjometrycznych metod analitycznych jest równanie Nernsta opisujące liniową zależność potencjału elektrody wskaźnikowej od logarytmu aktywności jonu, względem którego elektroda jest odwracalna. Do celów analitycznych wykorzystuje się na ogół empiryczną postać równania Nernsta;

0x01 graphic

gdzie:

E - potencjał elektrody

E0 - potencjał standardowy elektrody

ai - aktywność jonu I w roztworze badanym

S - nachylenie krzywej kalibracji

Nachylanie krzywej kalibracji S określa zmianę potencjału elektrody przy zmianie stężenia jonów o rząd i wyraża się wzorem:

0x01 graphic

Potencjometryczne oznaczanie zawartości określonego składnika roztworu może być przeprowadzane następującymi metodami:

metodą potencjometryczną bezpośrednią - polega ona na wyznaczaniu stężenia oznaczanego składnika na podstawie zmierzonej wartości SEM. Wymienić tu należy przede wszystkim pomiary pH roztworów, a także oznaczanie stężeń różnych jonów za pomocą elektrod jonoselektywnych jako elektrod wskaźnikowych

metodą miareczkowania potencjometrycznego - polega ona na rejestrowaniu zmian potencjału elektrody wskaźnikowej spowodowanych dodawaniem (titrant) lub usuwaniem (roztwór badany) określonych jonów w trakcie miareczkowania.

Metoda potencjometrycznych pomiarów pH jest oparta na pomiarach SEM ogniwa złożonego z elektrody wskaźnikowej o potencjale zależnym od aktywności jonów wodorowych (wodorowa, szklana, chinhydronowa) i elektrody odniesienia o stałym znanym i odtwarzalnym potencjale (najczęściej kalomelowa). SEM utworzonego ogniwa równa jest różnicy potencjałów obu elektrod.

0x01 graphic

0x01 graphic

gdzie:

0x01 graphic
- normalny potencjał danej elektrody odniesiony do wartości potencjału normalnej elektrody wodorowej

z - liczba elektronów biorących udział w reakcji elektronowej

R - stała gazowa

F - stała Faradaya

T - temperatura bezwzględna

Podstawiając 0x01 graphic
i przekształceniu powyższego równania względem pH, otrzymujemy związek między wartością pH badanego roztworu i wartością SEM ogniwa zbudowanego z tego roztworu i zanurzonych w nim dwóch elektrod: wskaźnikowej i odniesienia.

Rodzaje elektrod

Wśród elektrod rozróżniamy elektrody pierwszego i drugiego rodzaju. Potencjał elektrodowy elektrod pierwszego rodzaju jest wynikiem wysyłania lub przyjmowania przez metal jonów dodatnich z roztworu elektrolitu. Elektrody pierwszego rodzaju są więc odwracalne wzgledem kationów.
Przykładem takich elektrod są znane już nam, elektroda cynkowa i miedziana, a także elektroda węglowa, która jest odwracalna względem jonów wodorowych.
Elektrody drugiego rodzaju składają się z metalu jego trduno rozpuszczalnej soli oraz elektrolitu zawierającego aniony wchodzące w skład trudno rozpuszczalnej soli.
Przykładem elektrody drugiego rodzaju jest elektroda kalomelowa.
Elektroda ta składa się z naczyńka, w którym w charakterze kontaktu, umieszczony jest drucik platynowy, zanurzony w rtęci znajdującej się na dnie naczynia. Rtęć pokryta jest warstwą mieszaniny rtęci i chlorku rtęciowego Hg2Cl2 (kalomel) a nad tą mieszaniną znajduje się roztwór chlorku potasu KCl (rys. 9.4).

0x01 graphic

Rys.9.4 Schemat elektrody kalomelowej

Budowę elektrody kalomelowej mozna przedstawić następującym schematem.

Hg, Hg2Cl2(st) // KCl

a procesy na niej zachodzące wyraża równanie

2Hg + 2Cl- <=> Hg2Cl2 + 2e

O potencjale elektrody kalomelowej decyduje stężenie jonów chlorkowych, wobec których jest odwracalna. Stężenie jonów chlorkowych w roztworze KCl, którym elektroda jest wypełniona, wpływa na stężenie jonów rtęciowych z uwagi na to, że iloczyn rozpuszczalności kalomelu

LHg2Cl2(st) = CHg2+ * C2Cl-

ma wartość stałą w niezmiennej temperaturze.
Im większe jest stężenie jonów chlorkowych, tym mniejsze jest stężenie jonów rtęciowych i tym mniejszy potencjał elektrody. Elektroda kalomelowa może być użyta zarówno jako anoda jak i katoda.
W przypadku, gdy w jakimś ogniwie jest anodą, wówczas podczas pracy ogniwa ulega utlenieniu i przechodzi do roztworu w postaci jonów Hg22+, które z jonami Cl- pochodzącymi od KCl tworzą trudno rozpuszczalny osad Hg2Cl2(st). Jeżeli natomiast stanowi ona katodę, wówczas jony Hg22+ pochodzące z kalomelu redukują się do metalicznej rtęci, przy czym wzrasta stężenie jonów chlorkowych.
Z innych znanych elektrod drugiego rodzaju należy wymienić elektrodę chlorosrebrową Ag // AgCl(s) //Cl- oraz elektrodę siarczanowo-miedziowa Cu // CuSO4 // SO42-.
Często jako wzorca siły elektromotorycznej w pomiarach potencjometrycznych wykorzystywane jest ogniwo Westona zbudowane z półogniwa drugiego rodzaju i z półogniwa pierwszego rodzaju. Schemat ogniwa Westona jest następujący:

Hg // Hg2SO4(s) // CdSO4 8/3H2 9roztwór nasycony) // Cd Hg (amalgamat 12,5% Cd)

w ogniwie tym ma miejsce reakcja

Cd(s) + Hg2SO4(s) <=> CdSO4(s) + 2Hg(c)

Elektroda trzeciego rodzaju, elektroda zbudowana z metalu pokrytego cienką warstewką trudno rozpuszczalnej soli tego metalu zawierającą jeszcze drugi kation, który ze wspólnym anionem tworzy sól łatwiej rozpuszczalną. Potencjał tego półogniwa zależy od stężenia w roztworze drugiego kationu; np. dla elektrody Pb/PbC2O4/Ca C2O4/Ca2+ od jonów Ca2+.



Wyszukiwarka

Podobne podstrony:
teoria 1, fizyczna, chemia fizyczna, Fizyczna, laborki
teoria fizyczna cw 7, fizyczna, chemia fizyczna, Fizyczna, laborki
hydroliza estrów wstep i teoria, fizyczna, chemia fizyczna, Fizyczna, laborki
Pojęcia na egzamin z metali, Chemia Fizyczna, chemia fizyczna- laborki rozne, Rozne
mmgg, Studia PŁ, Ochrona Środowiska, Chemia, fizyczna, laborki, wszy, chemia fizyczna cz II sprawka
Ćwiczenie 1 - oznaczanie stalej i stopnia dysocjacji, Biotechnologia PWR, Semestr 3, Chemia fizyczna
Korelacja liniowa, fizyczna, chemia fizyczna, Fizyczna, CH. FIZYCZNA, laborki sprawozdania fizyczna
Fizyczna ćw 4, fizyczna, chemia fizyczna, Fizyczna, CH. FIZYCZNA, laborki sprawozdania fizyczna
ogniwa galwaniczne, fizyczna, chemia fizyczna, Fizyczna, laborki
spr57, Studia PŁ, Ochrona Środowiska, Chemia, fizyczna, laborki, wszy
Moje 50 , Studia PŁ, Ochrona Środowiska, Chemia, fizyczna, laborki, wszy, chemia fizyczna cz II spr
monia 11, Studia PŁ, Ochrona Środowiska, Chemia, fizyczna, laborki, wszy, chemia fizyczna cz II spr
15 wyznaczanie ciepła spalania, Studia PŁ, Ochrona Środowiska, Chemia, fizyczna, laborki, wszy, Chem
Chemia a ochrona środowiska - referat, Chemia Fizyczna, chemia fizyczna- laborki rozne, Rozne
Dane, fizyczna, chemia fizyczna, Fizyczna, CH. FIZYCZNA, laborki sprawozdania fizyczna
KOND41vmac, Studia PŁ, Ochrona Środowiska, Chemia, fizyczna, laborki, wszy, chemia fizyczna cz II s
Katalizatory - referat, Chemia Fizyczna, chemia fizyczna- laborki rozne, Rozne

więcej podobnych podstron