str012

str012



X powyższej analizy, przeprowadzonej dla skrajnych warunków, wynika, że dlii poziomów instrumentu praktycznie spotykanych na terenach Polski, zachodzi rówośj

At = AT = AT'    (1.331

a więc wartość At można liczyć zarówno ze wzoru (1.30), jak również na podstawiaj zależności

At = 0,00818 D3^,    (1.34)1

Jest to o tyle ważne, że w pewnych przypadkach dysponujemy długością d luku na| poziomie odniesienia, w innych zaś — długością D na poziomie instrumentu. Przyj obliczaniu At odpada więc konieczność przeliczania długości łuku z jednego poziomu! na drugi.

Mając Al obliczamy długość stycznej t na poziomie odniesienia korzystając! / (I ’9), natomiast długość stycznej T na poziomie instrumentu obliczymy ze wzoruj

T = D + At    (1.35)

Al nazwiemy poprawką stycznej.

Wy/nm/ymy teraz różnicę

Ac = c — d    (1.36)

długości t cięciwy i długości d łuku położonego na powierzchni odniesienia i od-pow lmla|i|t ego (ej cięciwie.

/ (I ’()) mamy

d = R • u    (1.37)

u ......a iidząi' przez punkt 0 (rys. 1.8) prostopadłą do cięciwy łatwo uzasadnić, że

c _ ■ er

2R_Sm2    (1.38)

Rozwiniemy funkcję sin-^- na szereg


a

g_ _ o____1_ zrr\3 _ a_ _

2 ~ 2 ~~ 3! '2^ _ 2 _48


Sin-r- = -r-- (—)

podstawimy wynik do (1.38), otrzymując

(1.39)


c = 2Rsin|=R(cr-|i)

Wprowadzimy teraz (1.37) i (1.39) do (1.36) i uzyskamy

Ac=-ir&


R

a pamiętając, że rr = — będziemy mieli

(1.40)

AL

m-


HjWlemy poprawkę cięciwy.

/ nli/.yiiumego związku wynika, że jej wartość bezwzględna jest 8 razy mniejsza od HMtylti stycznej. Jest więc oczywiste, że dla praktycznie spotykanych w Polsce BW||0iiimv inslrumentu długość cięciwy obliczymy ze wzoru

(1.41)


Al


1‘nnli'wnż


||| |Mi|m/.iije (1.28), więc ostatecznie możemy napisać


C = D + Ac

łIbln zyrny jeszcze różnicę

(1.42)

rlłll|tmti i u normalnej i długości d łuku leżącego na powierzchni odniesienia. Ponieważ

d = R • a

MtainliiNl n łatwo wyznaczyć ze wzoru

n = R • sina = R • (a —    )

wtyi


An = n — d


Raf

6


■i pnit .1.iwiając tu a = — będziemy mieli

R

An


d3

6R2


(1.4.1)


4 ml po uzględnieniu (1.28)

(1.44)


An = -^

Wielkość An nazwiemy poprawką normalnej. Jest ona co do bezwzględnej wartości llwil tuzy mniejsza od poprawki stycznej. Długość normalnej dla praktycznie (potykanych w Polsce poziomów instrumentu obliczymy ze wzoru

N = D + An    (1.45)

W tablicy 1.5 podane są (wmilimetrach) wartości poprawek At, An, Ac dla długości luku I) do 10 km.

Załączone zestawienie pozwala sformułować ważny wniosk praktyczny.

tesli długość D łuku nie przekracza 5 km można ją utożsamiać z długością stycznej, normalnej lub cięciwy, popełniając błąd nie większy od jednego milimetra.


Wyszukiwarka

Podobne podstrony:
str012 AT l) 3R2 8,2 mm Z powyższej analizy, przeprowadzonej dla skrajnych warunków, wynika, że dl
3.2.2 Zdefiniowanie materiału Analizy przeprowadzono dla krzesła wykonanego z aluminium oraz
DSC03380 KASTRACJA PROSIĄT rutynowo przeprowadzana dla polepszenia warunków chowu, przyswajania kann
File0004 Z analizy literatury badawczej w zakresie muzykoterapii wynika, że podstawę działań terapeu
img124 124 ■ f(x) - Cx dis x£<a,b> . 2 warunków F (a) * A - C > O, F (b) a 8 - C>0 wynik
img313 przy założeniu, że ładunki czynnikowe spełniają warunki wynikające ze wzoru (15.30). Postępuj
Z analizy europejskich rynków telewizji cyfrowej wynika, że zmiana techniki rozpowszechniania progra
Obraz1 (92) Z analizy literatury badawczej w zakresie muzykoterapii wynika, źe podstawę działań ter
scan0003 (9) sinę^ = k— bN Z warunków (3) i (4) wynika, że dwa maki" główne rozdzielone są (N-l
File0004 Z analizy literatury badawczej w zakresie muzykoterapii wynika, że podstawę działań terapeu
UWARUNKOWANIA DLA MIESZANKI BETONOWEJ WYNIKAJĄCE ZE ZBROJENIA KONSTRUKCJI Ą. Otulina - warstwa beton
332 333 (4) Z dokładniejszej analizy [L. 25, str. 19... 30] wynika, że przy znacznych odchyleniach c
9 (1307) Z analizy rotacji zapasów, należności i zobowiązań wynika, że w spółce Mieszko z roku na ro
DSC00230 (2) Z badań eksploatacyjnych poagu CTR-4G0 Pęndofcno. przeprowadzonych n.i knit Warszawa -
img124 124 ■ f(x) - Cx dis x£<a,b> . 2 warunków F (a) * A - C > O, F (b) a 8 - C>0 wynik
Kwas askorbinowy Źródło: Ekspertyza w zakresie analizy zagrożeń dla zdrowia populacji polskiej ze st

więcej podobnych podstron