82
Rozdział Ciągi i szeregi
4.103. an
4.106. an
4.107. an
4.108. an
4.109. an
4.110. an -
4.111. an =
4.112. an =
4.113. an =
4.114. an =
4.104.
4.105.
= ((r+(f)n + (M)n)cos(n!).
= —~+s"+n y/5n + 6n + 7n.
- arc tg v V9n2 + 2n - 3n. arc tg ^6 - v/5-v/5-^5--- 2\/5
2n-32n
„ _ ln(3n+6n+2n) , arctRr,
- -ń- + ““
an = ((5)n + (|)n) arctS'
4.H5. =
Zbadać zbieżność szeregów:
oo
4-116- E df2- 4.124.
OO
4-117. E
n=l
oo
4.H8. E
n=l
oo
n=l
oo
4.120. E sin(-»n+1)
z—' nz—n n=2
oo 9
4.121. E
n=l oo „
4-122. E
00
4.131. V ^-5nl
“ n+l n=l
4.125.
4.126.
4.127.
4.128.
4.129.
oo
n=l
n!2n •
4n—1
E^ In (1 + 1)
OO
2n2+3
40 1 ‘
4.132. V Mgin.n..i
z—' n2
n=l
4.133. E y+T7
OO
4.134. Y lĄn(n:
n43n4
n=l 00 3
4.135. T
40 3n+2' n=l
00
4-136. E
n= 1
4.137. Y
Zr', 2n:}
4.123. p loi
Z—/ n3 n=l
4.130.
00 / \ •
V (3±2nV ^ U+3 n j n=l ' /
00
4.138. ^ sin
n=l