52
Ciągi liczbowe
sj m •. h) lim fS-M) ł’n;
•-*1 +3+ ... + <2n - 1) /»—« V " /
i) Hm (1 +2* —3*). j) lim > .”—:-r;
■— 7 »—oc n [fai(n + I) — In nj
k) lim *; |) lim (-J ; m) lim sin" —.
• «\ n / «—o® n
2>tefeU3
Zoakfć zbiory punktów skupienia (właściwych i niewłaściwych) podanych ciągów:
Łi21n
Brl
»)«*=*
. < nr
b) 6n = sur —;
«) * (-ir: o ifa = cos^;
g)z««2*-i-(-2)\ h*) kw = JZ-E(i/ń);
Znałeś |nci<T dolce i górne podanych ciągów;
»ł«.-f-ir(»* + i); b)ł. = n^-2n^'—;
c}e. = {^'i : «9 <i. = (l+co«rer)n!;
g) » wa jjjSpj h) vn **(~5)m + l :
f») w: = 0.1. w} *0 22, trj = 0.333,..u^t «= 0j5X5^.. ló.... ;
pitUłfcl* J5*
J*) Im “ pierwa&a cyfra w zapiaie dziesiętnym liczby n.
Definicje ciągowe granic funkcji
• Przykład 2.1
Korzystając z definicji Heinego granicy właściwej funkcji uzasadnić podane równości:
a) lim (2x — 7) = 1; b) lim = 2; c) lim sin z = 0; d*) lim e* = e*.
Rozwiązane
W Rozwiązaniu wykorzystamy definicję Hdnego granicy włafciwej /unkcjl /;
śdzle a jest jednym z symboli "°°* oo, zaś 4 c
•) Mamy pokazać, i*
53