przedłużymy te krawędzie, to zauważymy, że zbiegają się one w każdej gj^ pie w jednym punkcie: poprzeczne i podłużne krawędzie zbiegają się w pun, ktach Zj i Zs, a pionowe w punkcie Z3 (poza płaszczyzną rysunku).
Punkty Z2, i Z8 nazywamy punktami zbiegu: punkty Zx i Z2 znajdują się na jednej prostej h poziomej, stanowiącej krawędź przecięcia się płaszczyzny horyzontu z płaszczyzną tłową.
3.3. RZUTOWANIE AKSONOMETRYCZNE 3.3.1. Rodzaje rzutów aksonometrycznych
Metoda rzutów prostokątnych umożliwia nam odwzorowanie przedmiotu na płaszczyźnie rysunku najczęściej w rzutach na trzy płaszczyzny wzajemnie do siebie prostopadłe w ten sposób, że większość krawędzi przedmiotu rzutuje eię bez skrótów lub skraca się całkowicie (do zera). Rysunek taki nie może odwzorować bryły w jednym rzucie, gdyż rzut przedstawia tylko jedną stronę przedmiotu, nie nadaje się więc do jej poglądowego odwzorowania.
Rzuty aksonometryczne (słowo aksonometryczny pochodzi z greckiego akson — oś i metreo — mierzę) natomiast odwzorowują kształt przedmiotu w jednym rzucie, przedstawiając jego trzy podstawowe wymiary (wysokość, szerokość i głębokość) w jednej płaszczyźnie zwanej rzutnią aksonometryczną.
Rzutnia aksonometryczna na jest płaszczyzną dowolnie ^ustawioną względem trzech głównych płaszczyzn rzutowych tc2, m układu prostokątnego
Rys. 3-5. Płaszczyzna rzutów aksonometrycznych
(rys. 3—5). Ślady h, r, k płaszczyzny 7ia utworzą na tych rzutniach trójkąt zwany trójkątem śladów.
Przyjmijmy dowolny .punkt A W przestrzeni odwzorowany przez jego rzuty prostokątne A', A" i A"' (rys. 3—5). Na rzutnię aksonometryczną na możemy wykonać nowy rzut punktu A w kierunku n prostopadłym do niej-łub w kierunku u ukośnym. W pierwszym przypadku mówimy o aksonometrii prostokątnej, a w drugim o aksonometrii ukośnej. Rzut An nazywamy rzutem aksonometry c/nym prostokątnym punktu A, a rzut Au — rzutem aksonome-trycznym ukośnym punktu A.
Rzut aksonometryczny jest zawsze ściśle związany z rzutami aksonometrycz-nymi trzech osi układu prostokątnego. Przystępując do wykonania rysunku ak sono metrycznego, musimy najpierw narysować rzuty aksonometryczne X YZ trzech osi układu prostokątnego xyz. Pomijając wyliczane teoretycznie skrócenia aksonometryczne, omówimy praktyczne wskazówki dotyczące n a stępujących rodzajów rzutów aksonometrycznych, stosowanych w rysunku technicznym maszynowym: a) rzut ukośny, b) rzut prostokątny jednomiaroicy, c) rzut prostokątny dwumiarowy,
3.3.2. Rzut ukośny
Wśród rzutów aksonometrycznych ukośnych najbardziej rozpowszechniony jest rzut ukośny zwany również perspektywą równoległą. Na rys. 3—60 przedstawiono układ osi współrzędnych XYZ. Dla odwzorowania przedmiotu będziemy rysowali równoległe do osi Z te krawędzie przedmiotu, które w rzeczywistości są pionowe, a równoległe do osi X i Y krawędzie poziome wzajemnie
Rys. 3-6. Sześcian w perspektywie równęleglej (rzut ukośny)
prostopadłe; przy czym krawędzie równoległe do osi X i Z przedstawiamy na rysunku bez skróceń (1 :1),' a krawędzie równoległe do osi Y" w dwukrotnym skróceniu (1 :2).
Według tych założeń przedstawiono na rys. 3—66 obraz sześcianu z wpisanymi w jego ściany okręgami kół.
w przybliżeniu 1 : 3 o osiach niekiedy
Rzuty kół leżących w płaszczyznych równoległych do płaszczyzn XOY i YOZ stają się elipsami o stosunku osi nachylonych do osi pionowej Z lub poziomej X pod kątem «ś 7\
Rysunek 3—6c przedstawia przykład przedmiotu odwzorowanego w rzucie ukośnym.
3.3.3. Rysowanie figur płaskich w rzucie ukośnym
Rys. 3—7 przedstawia kwadrat w rzucie ukośnym, zajmujący trzy położenia równoległe do płaszczyzn określonych osiami XYZ. Kwadrat zajmujący położenie równoległe do płaszczyzny
4* 51