1 m2/s = 3.875 x 104 ft2/h = 104 cm2/s 1 m2/h = 10.764 ft2/h = 104 cm2/h 1 m/s = 1.1811 ft/h = 0.01 cra/s
1 kg-mol/s-m2 = 737.35 lb-mol/h-ft2 = 0.1 g-mol/s-cm2 1 kg-mol/s • m2 • atm = 737.35 lb-mol/h • ft2 • atm = 0.1 g-mol/s • cm2 • atm
1 kg-mol/s • m2 • kPa = 7.4712 x 104 lb-mol/h ■ ft2 - atm = 10.1325 g-mol/s • cm2 • atm
Table A-1 First-Order Finite Difference Approximations
Difference
First Order Formula
Porwani Difference for
First Derivative
Backward Difference for
First Derivative
d f(xi)-f(xi_,)
dx X‘ Ax
Forward Difference for
Second Derivative
f(Xj)-2f(xi+{) + f(xi + 2) -
Ax~
Backward Difference for
Second Derivative
i
f(Xj) - 2f(Xj i) + f(xi_2) -
Table A-2 Second-Order Finite Difference Approximations
Difference |
Second Order Formula | |
For-ward Difference for First Derivative |
d , -3A*i) + 4A*i+l)-/(*i + 2) dxnXl) 2Ax |
(A-5) |
Central DifTerence for First Derivative |
d _ f(xi+l)-f(xi-l) dx ' ‘ 2Ax |
(A-6) |
Backward Difference for First Derivative |
d ,, x 3A*f) ~ Ąf(xi - 1) + f(*t - 2) dxnXl’ 2Ax |
(A-7) |
Table A-2 Second-Order Finite Difference Approximations
Second Order Formula
Forward Difference |
2 |
for Second Derivative |
u .■-•. H C (<N |
Central Difference |
2 |
for Second Derivative |
-V (lx |
Backward Difference |
,2 |
for Second Derivative |
= dx |
lf{x) = 2 ) - 5 H ) + Ąf(xi + 2) - A*j + 3)
Ax~
f(X, + | ) - 2f(Xj) + f(Xi _ ,)
Ajc"
~ 5A*j_ 1) + 4A*j _ 2) - _ 3)
A*'
(A-
(A-
(A-l
Table A-3 Error and Complimentary Error Functions
Z |
erf(2) |
erfc(z) |
0 |
0 |
1 |
0.1 |
0.11246278 |
0.88753722 |
0.2 |
0.22270233 |
0.77729767 |
0.3 |
0.32862638 |
0.67137362 |
0.4 |
0.42839185 |
0.57160815 |
0.5 |
0.52049927 |
0.47950073 |
0.6 |
0.60385538 |
0.39614462 |
0.7 |
0.6778004 |
0.3221996 |
0.8 |
0.7421001 |
0.2578999 |
0.9 |
0.79690728 |
0.20309272 |
1 |
0.84269981 |
0.15730019 |
1.1 |
0.88020404 |
0.11979596 |
1.2 |
0.91031291 |
0.089687086 |
1.3 |
0.93400685 |
0.065993147 |
1.4 |
0.95228401 |
0.047715994 |
1.5 |
0.96610402 |
0.033895983 |
1.6 |
0.97634724 |
0.023652758 |