3 . 0 Z e b r a n i e o b c i |e D ( p r z y k Ba d )
0 . 4
p = 1 0 k P a
e 1
P
G r u n t
z a s y p o w y :
G 1
P s , I D = 0 . 6 0 ,
( n )
= 3 3 . 5
Q 1 G 2 ( n ) = 1 8 . 0 k N / m 3
E I
Q 2
e 2
Q 3
A " 0 "
0 . 5 0 . 5
" "
B = 3 . 5 m
3 . 1 O b c i |e n i a p i o n o w e ( z e b r a n e n a 1 m b i e |c y [c i a n y )
C h a r a k t e r y s t y c z n e w a r t o [c i
O b c . r 0 M 0 f m i n Q m i n M 0 m i n f m a x Q m a x M 0 m a x r A Q m i n M A m i n
o b c i |e D
k N / m b m k N m / m b k N / m b k N m / m b k N / m b k N m / m b k N / m b k N m / m b
Q 1 4 . 4 0 . 4 2 4 . 0 = 4 2 . 2 - 1 . 0 5 - 4 4 . 3 0 . 9 3 8 . 0 - 3 9 . 9 1 . 1 4 6 . 4 - 4 8 . 7 0 . 7 0 3 8 . 0 2 6 . 6
Q 2 4 . 4 2 . 1 0 . 5 2 4 . 0 = 1 1 0 . 9 - 0 . 1 5 - 1 6 . 6 0 . 9 9 9 . 8 - 1 5 . 0 1 . 1 1 2 2 . 0 - 1 8 . 3 1 . 6 0 9 9 . 8 1 5 9 . 7
Q 3 0 . 6 3 . 5 2 4 . 0 = 5 0 . 4 0 0 0 . 9 4 5 . 4 0 1 . 1 5 5 . 4 0 1 . 7 5 4 5 . 4 7 9 . 5
G 1 4 . 4 2 . 1 0 . 5 1 8 . 0 = 8 3 . 2 0 . 5 5 4 5 . 8 0 . 8 6 6 . 6 3 6 . 6 1 . 2 9 9 . 8 5 4 . 9 2 . 3 0 6 6 . 6 1 5 3 . 2
G 2 4 . 4 0 . 5 1 8 . 0 = 3 9 . 6 1 . 5 0 5 9 . 4 0 . 8 3 1 . 7 4 7 . 6 1 . 2 4 7 . 5 7 1 . 3 3 . 2 5 3 1 . 7 1 0 3 . 0
P 2 . 6 m 1 0 k P a = 2 6 . 0 0 . 4 5 1 1 . 7 0 . 9 2 3 . 4 1 0 . 5 1 . 2 3 1 . 2 1 4 . 0 2 . 2 0 2 3 . 4 5 1 . 5
3 5 2 . 3 + 5 6 . 0 3 0 4 . 9 + 3 9 . 8 4 4 2 . 1 + 7 3 . 2 3 0 4 . 9 5 7 3 . 5
3 . 2 P a r c i e g r u n t u ( o b c i |e n i a p o z i o m e z e b r a n e n a 1 m b i e |c y [c i a n y )
w s p Bc z y n n i k i p a r c i a :
w s p . p a r c i a s p o c z y n k o w e g o : K 0 = 1 s i n ( n ) = 1 s i n 3 3 . 5 = 0 . 4 4 8 ,
w s p . p a r c i a g r a n i c z n e g o : K a = t g 2 ( 4 5 ( n ) / 2 ) = t g 2 ( 4 5 3 3 . 5 / 2 ) = 0 . 2 8 9 ,
p r z y j t o w s p . p a r c i a p o [r e d n i e g o : K I = ( K 0 + K a ) / 2 = ( 0 . 4 4 8 + 0 . 2 8 9 ) / 2 = 0 . 3 6 9
w a r t o [c i j e d n o s t k o w e p a r c i a :
e 1 = p K I = 1 0 k P a 0 . 3 6 9 = 3 . 6 9 k P a ,
e 2 = ( p + H ) K I = ( 1 0 k P a + 5 . 0 m 1 8 . 0 ) 0 . 3 6 9 = 3 6 . 9 k P a ,
w a r t o [ c h a r a k t e r y s t y c z n a w y p a d k o w e j p a r c i a :
E I k = 3 . 6 9 k P a + 0 . 5 ( 3 6 . 9 k P a 3 . 6 9 k P a ) 5 . 0 m = 1 0 1 . 5 k N / m b
n
h = 4 . 0 m
H = 5 . 0 m
E
y
1 . 0
0 . 6
0 . 6
p o Bo |e n i e w y p a d k o w e j p a r c i a :
5 . 0
3 . 6 9 5 . 0 2 . 5 + 0 . 5 3 3 . 2 1 5 . 0
1 8 4 . 5
3
y E = = = 1 . 8 2 m
3 . 6 9 5 . 0 + 0 . 5 3 3 . 2 1 5 . 0 1 0 1 . 5
w a r t o [ c h a r a k t e r y s t y c z n a m o m e n t u o d w y p a d k o w e j p a r c i a :
M E k = - 1 . 8 2 m 1 0 1 . 5 k N / m b = - 1 8 4 . 7 k N m / m b
w a r t o [ o b l i c z e n i o w a w y p a d k o w e j p a r c i a :
E I m a x = f 1 f 2 E I k
f 1 = 1 . 1 ( 0 . 9 ) d l a g r u n t u r o d z i m e g o ,
f 1 = 1 . 2 ( 0 . 8 ) d l a g r u n t u z a s y p o w e g o ,
f 2 = 1 . 0 w o b l i c z e n i a c h s t a n w g r a n i c z n y c h g r u n t u ,
f 2 = 1 . 1 ( 0 . 9 ) w o b l i c z e n i a c h s t a n w g r a n i c z n y c h k o n s t r u k c j i ,
E I m a x = 1 . 2 1 . 0 1 0 1 . 5 k N / m b = 1 2 1 . 8 k N / m b
w a r t o [ o b l i c z e n i o w a m o m e n t u o d w y p a d k o w e j p a r c i a :
M E m a x = - 1 . 8 2 m 1 2 1 . 8 k N / m b = - 2 2 1 . 7 k N m / m b
r o z k Ba d n a p r |e D w p o z i o m i e p o s a d o w i e n i a d l a o b c i |e D c h a r a k t e r y s t y c z n y c h :
Q M 0
1 , 2 = ,
F W x
g d z i e : Q s u m a c h a r a k t e r y s t y c z n y c h o b c i |e D p i o n o w y c h ,
M 0 s u m a m o m e n t w w s z y s t k i c h s i B w z g l d e m p u n k t u 0 ,
F p o w i e r z c h n i a p o d s t a w y f u n d a m e n t u ( d l a o b l i c z e D n a 1 m b : F = B 1 m b ) ,
W x w s k a zn i k d l a p o d s t a w y f u n d a m e n t u :
b h 2 1 m b B 2 1 3 . 5 2
d l a p r o s t o k t a : W x = = = = 2 . 0 4 m 3
6 6 6
Q M 0 + M E k 3 5 2 . 3 5 6 . 0 - 1 8 4 . 7
1 , 2 = = ,
3 . 5 m 2 2 . 0 4 m 3 3 . 5 2 . 0 4
1 = 1 0 0 . 7 + 6 3 . 1 = 1 6 3 . 8 k P a
2 = 1 0 0 . 7 6 3 . 1 = 3 7 . 6 k P a
m i m o [r d p o Bo |e n i a w y p a d k o w e j :
M - 1 2 8 . 7 B
e B = = = - 0 . 3 7 m <