Kursy do wyboru oferowane studentom II roku matematyki w semestrze letnim roku akad. 2013/14 (dotyczy studentów zarekrutowanych w roku akademckim 2012/13)
Metody sprawdzania i kryteria oceny efektów kształcenia |
Sprawdziany ustne lub pisemne, których formę, liczbę i terminy określają prowadzący zajęcia w porozumieniu z koordynatorem. |
Forma i warunki zaliczenia |
Egzamin oraz zaliczenie ćwiczeń na ocenę. |
Treści kształcenia (skrócony opis) |
Zmienne losowe typu ciągłego. Rozkłady sum, iloczynów, ilorazów zmiennych losowych. Wielowymiarowe zmienne losowe. Warunkowa wartość oczekiwana. |
Treści kształcenia (pełny opis) |
1. Rozkład sumy zmiennych losowych. Własności splotu. 2. Rozkład kwadratu zmiennej losowej. 3. Rozkład gamma i jego własności (gęstość, momenty). 4. Rozkład chi kwadrat i jego własności (gęstość, momenty). 5. Rozkład sumy zmiennych losowych o rozkładzie normalnym, Poissona, Bemoullego o rozkładzie gamma, o rozkładzie chi kwadrat. 6. Twierdzenie o rozkładzie iloczynu zmiennych losowych. 7. Twierdzenie o rozkładzie ilorazu zmiennych losowych. 8. Rozkład t Studenta i jego własności (momenty, gęstość). 9. Rozkład F Snedecora i jego momenty. 10. Wektory losowe, dystrybuanta wektora losowego. Gęstość wektora losowego o rozkładzie absolutnie ciągłym. 11. Rozkład brzegowy zmiennej losowej w rozkładzie wektora losowego. Gęstość rozkładu brzegowego. 12. Rozkład warunkowy zmiennej losowej. Gęstość rozkładu warunkowego. 13. Wielowymiarowy rozkład normalny. Niezależność zmiennych losowych a brak korelacji. 14. Zastosowanie arkusza kalkulacyjnego i programu Mathematica do obliczeń związanych z wybranymi rozkładami prawdopodobieństwa (gamma, chi kwadrat, t Studenta, dwuwymiarowy rozkład normalny). 15. Warunkowa wartość oczekiwana E(X|Y) zmiennej losowej X pod warunkiem {Y=y} i jej własności. 16. Warunkowa wartość oczekiwana E(X|A) zmiennej losowej X pod warunkiem sigma algebry A i jej własności. |
Literatura podstawowa i uzupełniająca |
Kurs ma charakter autorski, obowiązuje przede wszystkim materiał podany w trakcie wykładu i ćwiczeń. Do odpowiednich zagadnień literatura podawana jest na bieżąco w trakcie zajęć. Podana literatura ma charakter pomocniczy: [1] W. Feller, Wstęp do rachunku prawdopodobieństwa, Wydawnictwo Naukowe PWN, Warszawa 2006, [2] J. Jakubowski, R. Sztencel, Wstęp do teorii prawdopodobieństwa, wyd.III, Script, Warszawa 2004, [3] W.Krysicki (i współaut.) Rachunek prawdopodobieństwa i statystyka matematyczna, część I: Rachunek prawdopodobieństwa, Wydawnictwo Naukowe PWN, Warszawa 1999, [4] W.Krysicki (i współaut.) Rachunek prawdopodobieństwa i statystyka matematyczna, część II: Statystyka matematyczna, Wydawnictwo Naukowe PWN, Warszawa 1998, [5] A. Plucińska, E. Pluciński, Probablilistyka, rachunek prawdopodobieństwa, statystyka matematyczna, procesy stochastyczne, Wydawnictwa Naukowo-Techniczne, Warszawa 2000. |
Uwaga. Kurs adresowany do studentów specjalności matematyka finansowa.
Kurs Rachunek prawdopodobieństwa //jest kursem poprzedzającym kurs Statystyka. Osoby, które planują podjęcie kursu Statystyka w ramach specjalności matematyka finansowa, powinny zrealizować uprzednio kursy Rachunek prawdopodobieństwa I i II.