Pochodne funkcji zlozonych Za Zadanie domowe id 810241

background image

www.etrapez.pl

Strona 1



KURS

FUNKCJE WIELU ZMIENNYCH

Lekcja 4

Pochodne funkcji złożonej


ZADANIE DOMOWE

background image

www.etrapez.pl

Strona 2

Częśd 1: TEST

Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa).

Pytanie 1

Czym różni się obliczanie pochodnych złożonych przedstawione w Lekcji 4 od obliczania
pochodnych złożonych z Lekcji 1?

a) Wynikiem
b) Elementarnymi wzorami na pochodne
c) Koniecznością obliczenia ekstremum
d) Metodą obliczania i sposobem zapisu danych

Pytanie 2

2

2

2

3

1

cos

t

y

x

ts

t

s

s

y

 



Funkcja x jest funkcją…

a) Dwóch zmiennych t i s
b) Jednej zmiennej y
c) Trzech zmiennych t, s i x
d) Trzech zmiennych t, s i y

Pytanie 3

dy

dx

Co oznacza powyższy zapis?

a) Pochodną z funkcji y jednej zmiennej liczoną po x
b) Pochodną cząstkową z funkcji dwóch zmiennych y liczoną po x
c) Pochodną cząstkową funkcji liczoną po y

d) Pochodną cząstkową z funkcji y niewiadomej ilości zmiennych liczoną po x

background image

www.etrapez.pl

Strona 3

Pytanie 4

2

2

3

2

cos

sin

x

s

t

x y

u

y

s

t

x

y

  

Z powyższej funkcji można policzyd…

a) Dwie pochodne cząstkowe względem zmiennych s i t
b) Dwie pochodne cząstkowe względem zmiennych x i y
c) Dwie pochodne cząstkowe względem zmiennej s i dwie pochodne cząstkowe

względem zmiennej t

d) Dwie pochodne cząstkowe względem zmiennej x i dwie pochodne cząstkowe

względem zmiennej y

Pytanie 5

2

2

2

2

2

3

5

4

1

3

1

x

t

t

z

x

y

xy

x y

xy

x

y

y

t

  



Jakie wszystkie pochodne będziemy musieli policzyd, aby obliczyd pochodną z funkcji

z po

zmiennej t?

a) Pochodną z

2

2

2

2

5

4

1

x

y

xy

x y

xy

x

y

po x i po y, oraz pochodne ze

zmiennych x i y po x i y.

b) Pochodną z

2

2

2

2

5

4

1

x

y

xy

x y

xy

x

y

po x, oraz pochodną ze zmiennej x

po t

c) Pochodną z

2

2

2

2

5

4

1

x

y

xy

x y

xy

x

y

po x i po y, oraz pochodną ze

zmiennej x po t

d) Pochodną z

2

2

2

2

5

4

1

x

y

xy

x y

xy

x

y

po x i po y, oraz pochodne ze

zmiennych x i y po t

background image

www.etrapez.pl

Strona 4

Pytanie 6

2

2

3

t

a

a

z

ts

s

s

a

 

Po zastosowaniu wzoru na pochodną funkcji złożonej z po a otrzymałem następujący wynik:

 

3

2

1

3

2

1

dz

s

a

t

s

da

 

Czy to już koniec zadania?

a) Nie, za zmienne t i s należy jeszcze podstawid

2

a

a

oraz

a

b) Nie, za zmienną a należy jeszcze podstawid t i s
c) Tak
d) Nie, należy jeszcze policzyd pochodną po s

Pytanie 7

 

2

cos

g

t

st

z

arctg g

h

h

st

  



Jakie wszystkie pochodne będziemy musieli policzyd, aby obliczyd pochodną cząstkową
funkcji

z po zmiennej t?

a) Pochodną z

arctg g

h

po g i po h, oraz pochodne ze zmiennych g i h po t i s.

b) Pochodną z

arctg g

h

po g i po h, oraz pochodną ze zmiennej g po t i ze zmiennej

h po s

c) Pochodną z

arctg g

h

po g i po h, oraz pochodną ze zmiennych g i h po t.

d) Pochodną z

arctg g

h

po g, oraz pochodne ze zmiennych g i h po t i po s.

background image

www.etrapez.pl

Strona 5

Pytanie 8

2

2

?

f

P Q

P

Jaki będzie wynik powyższego działania?

a)

4PQ

b)

2

2P

c) 4P
d)

4Q

Pytanie 9

 

,

2

z

F u v

v

Jak będzie wyglądad pochodna z funkcji z po v?

a)

 

,

2

F

u v

v

v

b)

 

 

,

2

,

2

F

u v

v

F u v

v

c)

 

,

2

F

u v

v

d)

 

,

2

F u v

Pytanie 10

2

2

z

F x

y

Jak będzie wyglądad pochodna z funkcji z po x?

a)

2

2

2

F

x

y

x

x

b)

2

2

F

x

y

x

c)

2

2

2

F

x

y

x

x

d)

 

2

2

2

2

F

x

y

x

y

x

background image

www.etrapez.pl

Strona 6

Częśd 2: ZADANIA

Zad.1

Oblicz pochodne funkcji:

1)

2

2

2

3

x

t

z

x

y

y

t

 



2)

3

cos

y x

x

t

z

e

y

t

 

3)

2

2

2

2

cos

sin

x

u

v

z

xy

x y

y

u

v

4)

4

5

ln

2

3

x

u

v

x

z

y

u

v

y

  

5)

2

2

cos

t

x

e

u

x

zx

z

z

t

 

6)

2

1

s

P

P

y

x

arctg

Q

Q

s

y

 

 

   

Zad.2

Wykaż, że funkcja

b

c

a

b

c

, gdzie

 

 

cos

,

sin

b

d

e

c

d

e

spełnia równanie:

 

 

2

cos 2

a

a

a

dctg e

e

d

e

KONIEC


Wyszukiwarka

Podobne podstrony:
Pochodne funkcji zlozonych Za Rozwiazanie zadania domowego id
Granice funkcji Wprowadzenie Rozwiazanie zadania domowego id
Obliczanie pochodnych Zadanie Rozwiazanie zadania domowego id
Przebieg zmiennosci funkcji Z Zadanie domowe id 834520
Funkcje uwiklane Zadanie domo Rozwiazanie zadania domowego id
Obliczanie pochodnych Zadanie Zadanie domowe id 790100
Pochodne z definicji Zadanie Zadanie domowe id 810247
Funkcje uwiklane Zadanie domo Zadanie domowe id 696877
Przebieg zmiennosci funkcji Z Rozwiazanie zadania domowego id
Ekstremum funkcji Zadanie dom Zadanie domowe id 683497
Dziedzina funkcji Zadanie dom Zadanie domowe id 678917
Dziedzina funkcji Zadanie dom Rozwiazanie zadania domowego id
Ekstremum funkcji Zadanie dom Rozwiazanie zadania domowego id
Granice funkcji Wprowadzenie Zadanie domowe id 705334
Pochodne z definicji Zadanie Rozwiazanie zadania domowego id
Obliczanie pochodnych Zadanie Rozwiazanie zadania domowego id
Ekstrema warunkowe Zadanie do Rozwiazanie zadania domowego id
AMII, am2.7b, POCHODNA FUNKCJI ZŁOŻONEJ
Przyblizone wartosci Styczne Zadanie domowe id 836915

więcej podobnych podstron