Matematyka dyskretna (tryb zaoczny) – cz. II
Wy sza Szkoła Komunikacji i Zarz dzania w Poznaniu
1
1
>
p
{
}
1
,...,
2
,
1
,
0
−
=
p
Z
p
Z
b
a
∈
,
p
Z
p
a
∈
mod
p
p
p
a
mod
2
2 +
=
a div p
−
=
p
a
p
a
p
a mod
2
mod
5
−
1
2
2
5
2
5
2
5
=
⋅
−
=
−
4
mod
20
0
20
20
4
20
4
20
=
−
=
−
3
mod
5
−
( )
1
2
3
5
3
5
3
5
=
−
⋅
−
−
=
−
−
−
(
)
p
c
a
c
p
a
c
⋅
⋅
=
⋅
mod
mod
p
c
a
c
p
c
a
c
p
c
a
c
p
a
p
c
a
c
p
a
p
a
c
⋅
⋅
=
⋅
⋅
⋅
⋅
−
⋅
=
⋅
⋅
−
⋅
=
⋅
⋅
mod
mod
(
)
(
)
4
2
2
3
3
11
2
3
11
3
11
2
3
mod
11
2
=
⋅
=
⋅
−
⋅
=
⋅
−
⋅
=
⋅
4
3
6
22
6
22
6
22
6
mod
22
=
⋅
−
=
⋅
−
=
p
Z
b
a
∈
,
(
)
p
b
a
b
p
a
mod
+
=
⋅
+
0
1
1
1
0
0
1
0
\ b
a
dodawanie
( )
p
b
a
b
p
a
mod
⋅
=
⋅
⋅
1
0
1
0
0
0
1
0
\ b
a
mno enie
2
=
p
4
=
p
{
}
3
,
2
,
1
,
0
4
=
Z
2
1
0
3
3
1
0
3
2
2
0
3
2
1
1
3
1
1
0
0
3
2
1
0
4
+
1
2
3
0
3
2
0
2
0
2
3
1
1
0
1
0
0
0
0
0
3
2
1
0
4
∗
(
)
(
) (
)
p
b
p
a
p
b
a
p
mod
mod
mod
+
=
+
Matematyka dyskretna (tryb zaoczny) – cz. II
Wy sza Szkoła Komunikacji i Zarz dzania w Poznaniu
2
( )
(
) (
)
p
b
p
a
p
b
a
p
mod
mod
mod
∗
=
⋅
(
)
1
2
mod
6
5
=
+
(
)
(
) (
)
1
0
1
2
mod
6
2
mod
5
2
mod
6
5
2
2
=
+
=
+
=
+
(
)
(
)
2
3
3
4
mod
19
)
4
mod
11
(
4
mod
19
11
4
4
=
+
=
+
=
+
(
)
(
) (
)
1
3
3
4
mod
19
4
mod
11
4
mod
19
11
4
4
=
∗
=
∗
=
∗
--
Dzielenie liczb
Z
n
m
∈
,
(
)
0
≥
≥ n
m
m
k \ - liczba k jest podzielnikiem liczby m
ik
m
m
k
=
⇔
\
(
)
0
mod
≠
k
m
( )
m
k
m
k
\
\
−
{
}
m
k
m
k
k
n
m
NWD
\
,
\
:
max
)
,
(
=
m
m
NWD
=
)
0
,
(
)
12
,
30
(
NWD
...
17
13
11
7
5
3
2
30
0
0
0
0
1
1
1
⋅
⋅
⋅
⋅
⋅
⋅
⋅
=
{
}
i
i
i
i
n
m
P
n
m
NWD
,
min
)
,
(
1
∏
∞
=
=
...
11
7
5
3
2
12
0
0
0
1
1
⋅
⋅
⋅
⋅
⋅
=
{ }
{ }
{ }
6
3
2
3
3
2
)
12
,
30
(
0
,
1
min
1
,
1
min
2
,
1
min
=
⋅
=
⋅
⋅
=
NWD
)
,
( n
m
NWD
n
m
≥
0
≠
n
Wspólne dzielniki s takie same jak wspólne dzielniki
n
m
n
mod
,
var a, b : integer;
d : integer;
( )
n
m
NWD
a
,
=
a := m;
b := n;
repeat
(a, b) :=
(
)
b
a
b mod
,
r := a mod b;
until
(
)
0
=
b
z := b;
d := a;
b := r;
end;
)
20
,
63
(
NWD
0
1
0
1
2
1
2
3
2
3
20
3
20
63
modb
a
r
b
a
=
Algorytm ten wykonuje si max.
(
)
n
m
+
2
log
2
razy.
)
,
( n
m
NWD
Matematyka dyskretna (tryb zaoczny) – cz. II
Wy sza Szkoła Komunikacji i Zarz dzania w Poznaniu
3
var a,b,g : integer
a := m;
b := n;
repeat
q := 20 i r b;
( )
b
a, :=
(
)
b
q
a
b
=
−
,
until
(
)
0
=
b
; d := 2;
0
5
0
10
2
9
10
10
30
2
13
40
15
120
3
40
135
2
2
−
−
−
−
−
−
+
b
q
qb
b
b
a
--
Algorytm Euklidesa
)
,
( n
m
AE
( )
n
m
NWD
d
.
=
n
t
Sm
a
⋅
=
m
a
= ;
2′
:= n; S := 1; S′ := 0; t := 0;
q
:= a div a′ ;
( ) (
)
a
q
a
a
′
∗
−
′
=
′
,
2
,
2
(
)
S
S ′
,
:=
(
)
S
q
S
S
′
∗
−
′,
( )
t
t ′
, :=
(
)
t
q
t
t
′
−
−
′,
until
(
)
0
=
′
a
;
d
:= a;
−
−
−
−
−
−
−
−
−
∗
−
′
′
+
−
′
3
27
10
0
5
2
27
10
7
0
2
5
10
1
10
7
3
5
1
10
15
0
7
3
1
10
2
15
40
1
3
1
0
15
3
40
135
2
2
t
q
t
t
t
a
q
q
a
( )
5
400
405
40
10
135
3
=
−
=
⋅
−
+
⋅
=
⋅
+
⋅
n
t
m
s
3
10
5
=
−
=
=
b
t
d
( )
( )
(
)
n
g
O
n
f
=
je eli istnieje
0
>
c
o tej własno ci, e
( )
( )
n
g
c
n
f
⋅
≤
dla dostatecznie
du ych warto ci n
( )
1
=
n
g
( ) ( )
1
O
n
f
=
istnieje pewne
0
>
c
takie, e
( )
c
n
f
≤
Matematyka dyskretna (tryb zaoczny) – cz. II
Wy sza Szkoła Komunikacji i Zarz dzania w Poznaniu
4
( )
n
n
f
1
=
1
=
c
( )
1
5
+
= n
n
f
( )
2
n
n
g
=
1
=
c
2
2
1
5
n
n
n
≤
+
≤
−
-36
31
36
dla
6
=
n
--
( )
2
2
10
5
n
O
n
n
=
+
−
istnieje takie c, e
( )
2
n
c
n
f
⋅
≤
( )
2
2
2
2
2
10
5
10
5
10
5
n
n
n
n
n
n
n
n
f
+
+
≤
+
−
+
≤
+
−
=
b
a
b
a
+
≤
+
b
a
b
a
⋅
=
⋅
2
n
n
≤
1
2
≥
n
dla
1
≥
n
-- --
1.
...
...
1
3
2
3
4
<
<
<
<
<
<
<
n
n
n
n
n
wyka , e dowolne
( )
( )
( )
3
2
n
O
n
n
O
n
n
O
n
=
<
=
<
=
// ka dy wyraz jest
<
od tego po jego prawej
2.
1
≥
k
;
wyka , e
=
+
k
n
O
n
1
1
-- --
Własno ci
1)
( )
( )
(
)
n
g
O
n
f
=
oraz
7
.
=
= const
k
( )
( )
(
)
n
g
O
n
f
k
=
⋅
Istnieje takie c, e
( )
( )
n
g
c
n
f
⋅
≤
( )
( )
( )
( )
n
g
c
n
g
k
c
n
f
k
n
f
k
⋅
=
⋅
⋅
≤
⋅
=
⋅
2)
( )
( )
(
)
n
g
O
n
f
=
,
( )
( )
(
)
h
g
O
n
h
=
( ) ( )
( )
(
)
n
g
O
n
h
n
f
=
+
( ) ( )
( ) ( ) (
) ( )
n
g
c
c
n
h
n
f
n
h
n
f
⋅
+
≤
+
≤
+
1
2
c
( ) ( )
( ) ( )
(
)
n
b
n
a
O
n
h
n
f
⋅
=
⋅
( )
( )
(
)
n
g
O
n
f
=
oraz
( )
( )
( )
n
h
O
n
g
=
( )
( )
( )
n
h
O
n
f
=
( )
( )
n
g
c
n
f
⋅
≤
( )
( )
( )
( )
n
h
c
c
n
f
n
h
c
n
g
⋅
⋅
≤
⋅
≤
1
1