13. Dane:
π₯ = 3π πππ‘
π¦ = 2πππ 2
π‘
Szukane:
π¦ π₯ , π‘
π₯
0
π πππ‘ =
π₯
3
sin
2
π‘ =
π₯
2
9
πππ 2π‘ =
π¦
2
ππΕΌπ πππΕΔ: πππ 2πΌ = 2 cos
2
πΌ β 1
2 cos
2
π‘ =
π¦
2
+ 1 cos
2
π‘ =
π¦
4
+
1
2
cos
2
π‘ + sin
2
π‘ = 1
π₯
2
9
+
π¦
4
+
1
2
= 1
π₯
2
9
+
π¦
4
=
1
2
π¦
4
=
1
2
β
π₯
2
9
π¦ π₯ =
4
2
β
4π₯
2
9
= 2 β
4π₯
2
9
π¦ = 2πππ 2π‘ 0 = 2πππ 2π‘
πππ 2π‘ = 0
2 cos
2
π‘ β 1 = 0
2 cos
2
π‘ = 1
cos
2
π‘ =
1
2
πππ π‘ =
2
2
π‘ =
π
4
14. π₯ = π΄πππ ππ‘ π¦ = π΅π ππ ππ‘ πππ ππ‘ =
π₯
π΄
sin ππ‘ =
π¦
π΅
π₯
2
π΄
2
+
π¦
2
π΅
2
= 1
(uzupeΕnid)
15. π£ π‘ =
ππ₯
ππ‘
=
π
π
2
ππ‘ + π
βππ‘
β²
=
π
π
2
π β ππ
βππ‘
=
π
π
(1 β π
βππ‘
)
ZauwaΕΌamy, ΕΌe dla lim
π‘ββ
π
βππ‘
= 0, wiΔc π£
πππ₯
=
π
π
β 1 β 0 = π/π
Dla poczΔ
tku ruchu (gdy t=0), v jest rΓ³wne 0.
π π‘ =
ππ£
ππ‘
=
π
π
β²
β
π
π
β π
βππ‘
β²
=
π
π
β ππ
βππ‘
= π β π
βππ‘
a bΔdzie maksymalne, gdy π
βππ‘
bΔdzie rΓ³wne jeden, czyli t=0, wiΔc π
πππ₯
= π
16. π₯ =
π
cos ππ‘
π¦ = π β π‘π ππ‘
cos ππ‘ =
π
π₯
π‘π ππ‘ =
π¦
π
=
π ππ ππ‘
πππ ππ‘
π¦
π
β
π
π₯
= sin ππ‘
sin
2
ππ‘ + cos
2
ππ‘ = 1
π¦
2
π
2
π
2
π₯
2
+
π
2
π₯
2
= 1
π¦
2
π
2
+ π
2
π
2
π
2
π₯
2
= 1
π¦
2
π
2
= π
2
π₯
2
β π
2
π
2
= π
2
π₯
2
β π
2
π¦
2
=
π
2
π
2
π₯
2
β π
2
π¦ π₯ =
π
π
π₯
2
β π
2
π£
π₯
π‘ =
ππ₯
ππ‘
=
π
cos ππ‘
β²
=
π
β²
πππ ππ‘ β π β πππ ππ‘
β²
cos
2
ππ‘
=
π β ππ‘
β²
β sin ππ‘
cos
2
ππ‘
= ππ β
π ππ ππ‘
cos
2
ππ‘
=
πππ‘π ππ‘
πππ ππ‘
π£
π₯
π₯ = ππ β
π¦
π
β
π₯
π
=
ππ₯π¦
π
=
ππ₯
π
π π₯
2
β π
2
π
=
ππ₯ π₯
2
β π
2
π
π£
π¦
π‘ =
ππ¦
ππ‘
= ππ‘π ππ‘
β²
=
ππ
cos
2
ππ‘
π£
π¦
π¦ =
πππ₯
2
π
2
π₯
2
=
π¦π
π
2
+ π
2
= π
2
π¦
2
π
2
+ 1
π£
π¦
π¦ = ππ
π¦
2
π
2
+ 1 =
π¦
2
π
π
+ ππ
π£ π‘ = (
ππ
cos
2
ππ‘
)
2
+ (
πππ ππ ππ‘
cos
2
ππ‘
)
2
=
π
2
π
2
sin
2
ππ‘ + π
2
π
2
cos
4
ππ‘
= π
2
(π
2
sin
2
ππ‘ + π
2
)/ cos
4
ππ‘ =
π
cos
2
ππ‘
π
2
sin
2
ππ‘ + π
2
17.