2
x
M
094
,
0
)
6
;
0
(
2
__
992
,
4
738
,
0
)
6
(
832
,
0
094
,
0
)
8
;
6
(
2
__
x
x
x
M
008
,
3
262
,
0
)
8
(
1
992
,
4
738
,
0
)
14
;
8
(
2
__
x
x
x
M
x
M
031
,
0
)
6
;
0
(
3
__
912
,
0
121
,
0
)
6
(
152
,
0
0311
,
0
)
12
;
6
(
3
__
x
x
x
M
088
,
11
879
,
0
)
12
(
1
912
.
0
121
,
0
)
14
;
12
(
3
__
x
x
x
M
3
x
M
5
,
0
)
3
;
0
(
1
3
5
,
0
)
3
(
1
5
,
0
)
6
;
3
(
1
x
x
x
M
0
)
6
(
5
,
0
3
5
,
0
)
14
;
6
(
1
x
x
M
0
)
6
;
0
(
2
M
5
,
4
75
,
0
)
6
(
75
,
0
)
8
;
6
(
2
x
x
M
5
,
3
25
,
0
)
8
(
1
5
,
4
75
,
0
)
4
1
;
8
(
2
x
x
x
M
4
0
)
6
;
0
(
3
M
5
,
1
25
,
0
)
6
(
25
,
0
)
2
1
;
6
(
3
x
x
M
5
,
10
75
,
0
)
12
(
1
5
,
1
25
,
0
)
4
1
;
12
(
3
x
x
x
M
OBLICZENIA W MATHEMATICE
5
K moduł Younga
K 2 10
11
Pa
J moment bezwładności dwuteownika 80
J 80.1 10
8
m
4
Masa całej belki wynosi :
m 84kg
Obliczam współczynniki wpływu
ij
11
1
KJ
0
3
0.406x0.5x x
3
6
0.594x 3 0.5x 3 x
1
KJ
3.231
12
1
KJ
6
8
0.105x 1.194 0.75x 4.5 x
8
14
0.25x 3.5 0.105x 1.194 x
1
KJ
1.284
13
1
KJ
6
12
0.25x 1.5 0.105x 1.194 x
12
14
0.105x 1.194 0.75x 10.5 x
1
KJ
0.444
22
1
KJ
6
8
0.738x 4.992 0.75x 4.5 x
8
14
0.262x 3.008 0.25x 3.5 x
1
KJ
2.376
23
1
KJ
6
8
0.25x 1.5 0.738x 4.992 x
8
12
0.262x 3.008 0.25x 1.5 x
12
14
0.75x 10.5 0.262x 3.008 x
1
KJ
0.946667
33
1
KJ
6
12
0.121x 0.912 0.25x 1.5 x
12
14
0.75x 10.5 0.879x 11.088 x
1
KJ
1.272
6
Przyjmuję e
KJ
m
2
Obliczone wartości jak i wartości mas wstawiam do wyznacznika1
A 3.2309999999999963
7
3
e, 1.2840000000000016`, 0.4439999999999866,
1.742999999999994, 2.3759999999999977`
7
2
e, 0.9466666666666264,
0.4439999999999866, 0.9466666666666264, 1.2720000000000393
7
2
e
3.231
7 e
3
,
1.284 ,
0.444
,
1.743 , 2.376
7 e
2
, 0.946667
,
0.444 , 0.946667 , 1.272
7 e
2
MatrixForm[A]
3.231
7 e
3
1.284
0.444
1.743
2.376
7 e
2
0.946667
0.444
0.946667
1.272
7 e
2
Det
m3
3.2309999999999963`
7 e
3
1.2840000000000016`
0.4439999999999866`
1.742999999999994`
2.3759999999999977`
7 e
2
0.9466666666666264
0.4439999999999866`
0.9466666666666264`
1.2720000000000393`
7 e
2
4.82657
37.6913 e
69.3718 e
2
343 e
3
12
-----------------
Wyznaczam pierwiastki równania
Solve4.826572672000384` 37.69127651851934` e 69.37175000000026` e
2
343 e
3
12
0,
e
7
{{e
0.188175},{e0.522981},{e1.71584}}
m=84
84
K 2 10
11
200000000000
J 80.1 10
8
8.01
10
7
Na podstawie wyliczonych e
1
, e
2
, e
3
wyliczam częstości
1,
2,
3
poszczególnych
mas m
1
, m
2
, m
3
e
3
0.1881750602863202`
0.188175
3
K J
m e
3
100.672
e
2
0.5229813732147199`
0.522981
2
K J
m e
2
60.3877
e
1
1.7158435664989693`
1.71584
1
K J
m e
1
33.339
Wyliczam współczynniki drgań własnych
i
A
2
i
A
1
i
i
A
3
i
A
1
i
----------------------
1
Detm2
3.2309999999999963
7 e1
3
0.4439999999999866`
1.742999999999994
0.9466666666666264
Detm2
1.2840000000000016`
0.4439999999999866`
2.3759999999999977`
7 e1
2
0.9466666666666264
8
-0.53248
1
Detm2
3.2309999999999963`
7 e1
3
1.2840000000000016`
1.742999999999994`
2.3759999999999977`
7 7 e1
2
Detm2
1.2840000000000016`
0.4439999999999866`
2.3759999999999977`
7 e1
2
0.9466666666666264
-10.0482
2
Detm2
3.2309999999999963
7 e2
3
0.4439999999999866`
1.742999999999994
0.9466666666666264
Detm2
1.2840000000000016`
0.4439999999999866`
2.3759999999999977`
7 e2
2
0.9466666666666264
1.16058
2
Detm2
3.2309999999999963`
7 e2
3
1.2840000000000016`
1.742999999999994`
2.3759999999999977`
7
e2
2
Detm2
1.2840000000000016`
0.4439999999999866`
2.3759999999999977`
7 e2
2
0.9466666666666264
1.17235
3
Detm2
3.2309999999999963
7 e3
3
0.4439999999999866`
1.742999999999994
0.9466666666666264
Detm2
1.2840000000000016`
0.4439999999999866`
2.3759999999999977`
7 e3
2
0.9466666666666264
4.12611
3
Detm2
3.2309999999999963`
7 e3
3
1.2840000000000016`
1.742999999999994`
2.3759999999999977`
7
e3
2
Detm2
1.2840000000000016`
0.4439999999999866`
2.3759999999999977`
7 e3
2
0.9466666666666264
-5.64416
y
1
, y
2
, y
3
przemieszczenia mas
y
1
A
11
sin
1
t
1
A
12
sin
2
t
2
A
13
sin
3
t
3
y
2
A
21
sin
1
t
1
A
22
sin
2
t
2
A
23
sin
3
t
3
9
y
3
A
31
sin
1
t
1
A
32
sin
2
t
2
A
33
sin
3
t
3
Warunki początkowe :
y
1
0 0 y
2
0 0 y
3
0 0
1
,
2
,
3
90°
y
1
0 V
01
y
2
0 0 y
3
0 0 V
01
1m s
y
1
A
11
1
cos
1
t A
12
2
cos
2
t A
13
3
cos
3
t
y
2
A
11
1
1
cos
1
t A
12
2
2
cos
2
t A
13
3
3
cos
3
t
y
3
A
11
1
1
cos
1
t A
12
2
2
cos
2
t A
13
3
3
cos
3
t
t 0
Wyznaczam amplitudy przemieszczeń A
11
, A
12
, A
13
A
11
1
A
12
2
A
13
3
v
A
11
1
1
A
12
2
2
A
13
3
3
0
A
11
1
1
A
12
2
2
A
13
3
3
0
SolveA
11
1
A
12
2
A
13
3
1, A
11
1
1
A
12
2
2
A
13
3
3
0,
A
11
1
1
A
12
2
2
A
13
3
3
0, A
11
, A
12
, A
13
3.231
7 e
3
,
1.284 ,
0.444
,
1.743 , 2.376
7 e
2
, 0.946667
,
0.444 , 0.946667 , 1.272
7 e
2
11
0.00762174 ,
3.231
7 e
3
,
1.284 ,
0.444
,
1.743 , 2.376
7 e
2
,
0.946667
,
0.444 , 0.946667 , 1.272
7 e
2
12
0.0164303 ,
3.231
7 e
3
,
1.284 ,
0.444
,
1.743 , 2.376
7 e
2
, 0.946667
,
0.444 , 0.946667 , 1.272
7 e
2
13
0.00244642
A
11
0.0076217394872164675`
0.00762174
A
12
0.016430255580487465`
0.0164303
A
13
0.0024464160435456227`
-0.00244642
Wyznaczam pozostałe amplitudy przemieszczeń:
10
A
21
1
A
11
-0.00405843
A
22
2
A
12
0.0190686
A
23
3
A
13
-0.0100942
A
31
1
A
11
-0.0765851
A
32
2
A
12
0.0192621
A
33
3
A
13
0.013808
t 2
1
0.0471159
Obliczam przemieszczenia mas m
1
, m
2
, m
3
y
1
A
11
Sin33.33901523315005`` t A
12
Sin60.387701870668515`` t
A
13
Sin100.67243679608531`` t
0.01486
y
2
A
21
Sin33.33901523315005`` t A
22
Sin60.387701870668515`` t
A
23
Sin100.67243679608531`` t
55
0.0116
y
3
A
31
Sin33.33901523315005`` t A
32
Sin60.387701870668515`` t
A
33
Sin100.67243679608531` t
-0.0847609
-------------------------------------
Obliczam reakcje w podporach R
1
, R
2
, R
3
, R
4
jak i siły B
1
, B
2
, B
3
powodujące
ugięcie
11
1
K J
3.2309999999999963`
0.0000201685
12
1
K J
1.2840000000000016`
8.01498
10
6
13
1
K J
0.4439999999999866`
2.77154
10
6
11
21
12
8.01498
10
6
31
13
2.77154
10
6
22
1
K J
1.2840000000000016`
8.01498
10
6
23
1
K J
0.9466666666666264`
5.90928
10
6
32
23
5.90928
10
6
33
1
K J
1.2720000000000393`
7.94007
10
6
Solvey
1
11
B
1
21
B
2
13
B
3
, y
2
21
B
1
22
B
2
23
B
3
,
y
3
31
B
1
32
B
2
33
B
3
, B
1
, B
2
, B
3
B
1
2291.18 , B
2
4917.82 , B
3
7814.82
B1=-2,291kN B2=-4,917kN B3=-7,814kN