1
Podstawy techniki
mikroprocesorowej
ETEW006
Przetworniki A/C i C/A
Andrzej Stępień
Katedra Metrologii Elektronicznej i Fotonicznej
AD Converter Resolution
Kester W.:
Data Converter Codes—Can You Decode Them.
(MT-009
TUTORIAL) Analog Devices, Rev.A, 10/08
Full–Scale
(FS) is independent of the number of bits of resolution (N)
integer binary can be interpreted as fractional binary if all integer
values are divided by 2
N
, for example:
−
MSB (most significant bit) has a weight of ½ (i.e., 2
(N–1)
/2
N
= 2
–1
),
−
next bit has a weight of ¼ (i.e., 2
–2
), and so forth down to the LSB
−
LSB (least significant bit) has a weight of 1/2
N
when the weighted bits are added up
, they form a number with any of
2
N
values, from 0 to
(1 – 2
–N
) of full-scale
1LSB = FS/2
N
AD Converter Resolution
Ideal Unipolar Transfer Function
Kester W.:
Data Converter Codes—Can You Decode Them.
(MT-009
TUTORIAL) Analog Devices, Rev.A, 10/08
FS
1 LSB
AD Converter Resolution
Ideal Bipolar Transfer Function
Kester W.:
Data Converter Codes—Can You Decode Them.
(MT-009
TUTORIAL) Analog Devices, Rev.A, 10/08
FS
1 LSB
Offset binary
, the zero signal
value is assigned the code 1000
(sequence of codes is identical
to that of straight binary)
Ones complement
can also be
used to represent negative
numbers (it is much less popular
than twos complement and
rarely used today)
Twos complement
is
identical to offset binary
with the most-significant-
bit (MSB) complemented
(inverted)
Successive Approximation ADC
Algorithm
Kester W.: ADC Architectures II: Successive Approximation ADCs.
(MT-021 TUTORIAL) Analog Devices, Rev.A, 10/08
U
X
?
U
X
= 13 V
FS
= 16 V, N = 4, 1LSB = FS/2
N
= 1 V
i = 3
U
3
(MSB) = 1/2
N - i
∗
FS = 8 V,
U
X
≥≥≥≥
(U
3
)
= 8
U
3
=
1
i = 2
U
2
= 1/2
N - i
∗
FS = 4 V,
U
X
≥≥≥≥
(U
3
+ U
2
)
= 12
U
2
=
1
i = 1
U
1
= 1/2
N - i
∗
FS = 2 V,
U
X
<
(U
3
+ U
2
+ U
1
)
= 14
U
1
= 0
i = 0
U
0
(LSB) = 1/2
N - i
∗
FS = 1 V,
U
X
≥≥≥≥
(U
3
+ U
2
+
U
1
+ U
0
) = 13
U
0
=
1
? = 11
0
1
3-Bit Switched Capacitor
SAR ADC
High Speed Data Conversion Overview.
Analog Devices, 2006, Section 1
If S1, S2, S3, and S4 are
all connected to ground,
a voltage equal to
–A
IN
appears at node A
Connecting S1 to
V
REF
adds a voltage equal to
V
REF
/2 to
–A
IN
Comparator then makes
the MSB bit decision,
and the SAR either
leaves S1 connected to
V
REF
or connects it to ground depending on the
comparator output (which is high or low depending on whether the voltage at
node
A
is negative or positive, respectively)
Similar process is followed for the remaining two bits: at the end of the
conversion interval, S1, S2, S3, S4, and SIN are connected to
A
IN
, S
C
is
connected to ground, and the converter is ready for another cycle
V
REF
A
IN
A
2
Dual—Slope Integrating ADC
Algorithm
Bryant J., Kester W.: ADC Architectures VIII: Integrating ADCs.
(MT-021 TUTORIAL) Analog Devices, Rev.A, 10/08
Figure 1: Dual Slope Integrating ADC
Dual—Slope Integrating ADC
Rejection of Noise Frequencies
Bryant J., Kester W.: ADC Architectures VIII: Integrating ADCs.
(MT-021 TUTORIAL) Analog Devices, Rev.A, 10/08
Figure 3: Frequency Response of Integrating ADC
excellent
rejection of
50-Hz & 60-Hz
STM8S
AD Converter
RM0016. STM8S microcontroller family. Reference manual.
STMicroelectronics. December 2009, Doc ID 14587 Rev 6
10-bit resolution
Single and continuous
conversion modes
Programmable
prescaler: f
MASTER
divided by 2 to 18
External trigger option
using external interrupt
(ADC_ETR) or timer
trigger (TRGO)
Analog zooming (in
devices with V
REF
pins)
Interrupt generation at End of Conversion
Buffered continuous conversion mode (Data buffer size 10x10 / 8x10 bits)
Scan mode for single and continuous conversion
Sprzeczności konstrukcyjne
precyzyjna struktura przetwornika A/C pracuj
ą
ca z napi
ę
ciami na bardzo
małym poziomie, np.:
napi
ę
cie
warto
ść
1 LSB dla rozdzielczo
ś
ci
wzorcowe
V
REF
[V]
8 bitów
10 bitów
12 bitów
14 bitów
16 bitów
24 bity
[mV]
[mV]
[
µµµµ
V]
[
µ
V]
[
µ
V]
[nV]
5,0
19,6
4,89
1221
306
76,3
298
3,3
12,9
3,23
806
201
50,4
197
2,5
9,77
2,44
610
152
38,1
149
1,8
7,03
1,76
439
110
27,5
107
1,5
5,86
1,47
366
91,6
22,9
89,4
1,2
4,69
1,17
293
73,2
18,3
71,5
0,8
3,12
0,781
195
48,8
12,2
47,7
szybko działaj
ą
ca struktura cyfrowa z napi
ę
ciami o poziomie kilka rz
ę
dów
wy
ż
szymi od cz
ęś
ci analogowej, V
CC
= 0,8 .. 5,5 V
Offset
&
Gain Errors
Kester W.: The Importance of Data Converter Static Specifications
Don't Lose Sight of the Basics!
(MT-010 TUTORIAL) Analog Devices, Rev.A, 10/08
Figure 4: Bipolar Data Converter Offset and Gain Error
Offset
&
Gain Errors
Kester W.: The Importance of Data Converter Static Specifications
Don't Lose Sight of the Basics!
(MT-010 TUTORIAL) Analog Devices, Rev.A, 10/08
Figure 5: Method of Measuring Integral Linearity Errors
(Same Converter on Both Graphs)
3
Voltage Reference
MODEL
Output
Voltage
Temperature Long-Term
Supply
voltage
accuracy
coefficient
stability
Current
[V]
[ppm/°C]
[ppm]
[
µ
A]
1) ADR440B
2.048
±
1 mV
±
1
±
50
3mA
ADR444B
4.096
(25°)
2) MAX6138
2.048 / 4.096
±
0.1%
±
25
±
120
45
TYP
3) LM4132
2.048 / 4.096
±
0.05%
±
10
±
50
60
4) REF5020I
2.048
±
0.05%
±
3
800
REF5040I
4.096
(25°)
1. ADR440. Ultralow Noise, LDO XFET Voltage References with Current Sink and Source.
Analog Devices, 2008, D05428-0-3/08, Rev. C
2. MAX6138. Shunt Voltage Reference with Multiple Reverse Breakdown Voltages.
Maxim, 2004, Rev 2; 4/04
3. LM4132. SOT-23 Precision Low Dropout Voltage Reference.
National Semiconductor, DS201513, August 2006
4. REF50xx Low-Noise, Very Low Drift, Precision VOLTAGE REFERENCE
Texas Instruments SBOS410D, REVISED APRIL 2009
Sample
&
Hold
R
S
R
I
C
I
N-bitowy przetwornik
analogowo-cyfrowy
K
V
S
t
V
CI
= V
S
(1 - e )
V
S
t
SAMPLE
<
1
/
2
LSB
(R
S
+ R
I
)
∗
C
I
t
t
S
(
1
/
2
LSB) = (R
S
+ R
I
)
∗
C
I
∗
ln(2
∗
2
N
)
ln(2
∗
2
N
)
N
6,24
8
7,62
10
9,01
12
10,40
14
11,76
16
17,33
24
t
HOLD
+ t
CONVERSION
przykład:
N = 12 bitów
R
I
= 2 k
Ω
Ω
Ω
Ω
C
IMAX
= 40 pF
R
S
= 10 k
Ω
Ω
Ω
Ω
t
SAMPLE
≥≥≥≥
4,33
µµµµ
s
Wymagania Sample
&
Hold
programowalny (zmienny) czas próbkowania t
SAMPLE
mała rezystancja wej
ś
ciowego MPX i kluczy układu S&H
mała pojemno
ść
wej
ś
ciowa C
I
układu S&H
mała stratno
ść
kondensatora pami
ę
taj
ą
cego C
I
krótki czas przetwarzania ze wzgl
ę
du na upływno
ść
kondensatora
pami
ę
taj
ą
cego C
I
małe pr
ą
dy wej
ś
ciowe
Cortex-M3
STM32F101xx
STM32F101x6, STM32F101x8 STM32F101xB.
STMicroelectronics, Rev. 7, May 2008
R
AIN
maximum external impedance
allowed for an error below
1
/
4
of LSB (N = 12, from 12-bit resolution)
R
AIN
<
f
ADC
∗
C
ADC
∗
ln
(
2
N+2
)
T
S
– R
ADC
f
ADC
ADC clock frequency:
0.6 – 14 MHz
C
ADC
Internal sample and hold capacitor: < 5 pF
R
ADC
Sampling switch resistance:
< 1 k
Ω
Cortex-M3
LPC176x
LPC1768/66/65/64. 32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 64 kB
SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN. NXP, Rev. 02-01, 17 February 2009
12-bit successive approximation ADC, 1 MHz conversion rate
Input multiplexing among 8 pins.
Power-down mode.
Individual channels can be selected for conversion.
Burst conversion mode for single or multiple inputs.
Optional conversion on transition of input pin or Timer Match signal.
Individual result registers for each ADC channel to reduce interrupt overhead.
DMA support
<tbd>
STM8S105xx
Some
ADC Parameters
STM8S105xx. Access line, 16 MHz STM8S 8-bit MCU, up to 32 Kbytes Flash,
integrated EEPROM,10-bit ADC, timers, UART, SPI, I²C.
STMicroelectronics, June 2009 Doc ID 14771 Rev 8
f
ADC
ADC clock frequency
V
DDA
= 2.95 to 5.5 V
1
MIN
4
MAX
MHz
V
DDA
= 4.50 to 5.5 V
1
6
MHz
V
DDA
Analog supply
3
5.5
V
V
REF+
Positive reference voltage
2.75
V
DDA
V
V
REF-
Negative reference voltage
V
SSA
0.5
V
C
ADC
Internal sample and hold capacitor
3
TYP
pF
t
STAB
Wakeup time from standby
7
µ
s
t
CONV
Total conversion time (including sampling time
10-bit resolution)
f
ADC
= 4 MHz
3.5
µ
s
f
ADC
= 6 MHz
2.33
µ
s
14
1/f
ADC
|ET|
Total unadjusted error
f
ADC
= 2 MHz
1
2.5
LSB
f
ADC
= 6 MHz
1.6
3.5
LSB
|EO|
Offset error
f
ADC
= 2 MHz
0.6
2
LSB
f
ADC
= 6 MHz
1.2
2.5
LSB
|EG|
Gain error
f
ADC
= 2 MHz
0.2
2
LSB
f
ADC
= 6 MHz
0.8
2.5
LSB
|ED|
Differential linearity error
f
ADC
= 2 MHz
0.7
1.5
LSB
f
ADC
= 6 MHz
0.8
1.5
LSB
|EL|
Integral linearity error
f
ADC
= 2 MHz
0.6
1.5
LSB
f
ADC
= 6 MHz
0.6
1.5
LSB
A
D
C
a
c
c
u
ra
c
y
:
R
A
IN
<
1
0
k
Ω
V
D
D
A
=
5
V
4
MSP430FG4618
Some
ADC Parameters
12-bit ADC parameters (V
CC
= 2.2 – 3 V)
PARAM
TEST /CONDITIONS
MIN NOM MAX
UNIT
t
Sampling
Sampling time / R
S
= 400
Ω
, R
I
= 1000
Ω
,
1220
ns (3V)
C
I
= 30pF,
τ
= [R
S
+ R
I
] x C
I
1440
ns (2.2V)
Approximately ten Tau (
τ
) are needed to get an error of less than ±0.5 LSB:
t
Sample
= ln(2
n+1
)
∗
(R
S
+ R
I
)
∗
C
I
+ 800 ns
where n = ADC resolution = 12, R
S
= external source resistance
E
I
Integral linearity error / 1.4 V
≤
Ve
REF+
≤
1.6 V
±2
LSB
1.6 V < Ve
REF+
≤
V
AVCC
±1.7
LSB
E
D
Differential linearity error / C
VREF+
= 10
µ
F (tantalum)
and 100nF (ceramic)
±1
LSB
E
O
Offset error / Internal impedance of source R
S
< 100
Ω
C
VREF+
= 10
µ
F (tantalum) and 100nF (ceramic)
±2
±4
LSB
E
G
Gain error / C
VREF+
= 10
µ
F (tantalum) & 100 nF (ceramic)
±1.1
±2
LSB
E
T
Total unadjusted error / C
VREF+
= 10
µ
F (tantalum)
and 100nF (ceramic)
±2
±5
LSB
MSP430xG461x. MIXED SIGNAL MICROCONTROLLER
Texas Instruments, SLAS508G, REVISED OCTOBER 2007
Odczyt 12-bitowego
wyniku przetwarzania (1/2)
bit
11
bit
10
bit
9
bit
8
bit
7
bit
6
bit
5
bit
4
bit
3
bit
2
bit
1
bit
0
-
-
-
-
bit
11
bit
10
bit
9
bit
8
bit
7
bit
6
bit
5
bit
4
bit
3
bit
2
bit
1
bit
0
lub
-
-
-
-
MSByte
LSByte
Low Byte
High Byte
N
N+1
N+2
N
−
1
Little Endian
memory
address:
Big Endian
High Byte
N
N+1
N+2
N
−
1
Low Byte
memory
address:
Odczyt 12-bitowego
wyniku przetwarzania (2/2)
bit
11
bit
10
bit
9
bit
8
bit
7
bit
6
bit
5
bit
4
bit
3
bit
2
bit
1
bit
0
CH
3
CH
2
CH
1
CH
0
ADCDATAH (MSByte)
addr = 0DAh
ADCDATAL (LSByte)
addr = 0D9h
channel selection
bits
channel result
ADuC812
(Analog Devices)
C8051F00x
(CYGNAL Integrated Products)
bit
11
bit
10
bit
9
bit
8
bit
7
bit
6
bit
5
bit
4
bit
3
bit
2
bit
1
bit
0
x
x
x
x
ADC0H (MSByte)
addr = 0BFh
ADC0L (LSByte)
addr = 0BEh
channel result
sign extension of ADC0H.3
if a differential reading
otherwise = 0000b
ADLJST = 0
:
bit
11
bit
10
bit
9
bit
8
bit
7
bit
6
bit
5
bit
4
bit
3
bit
2
bit
1
bit
0
0
0
0
0
channel result
ADLJST = 1
ADuC812. MicroConverter, Multichannel 12-Bit ADC with Embedded Flash MCU.
Analog Devices, 2003
C8051F00x/1/2/5/6/7. Mixed-Signal 32KB ISP FLASH MCU Family.
Silicon Laboratories, 2003, Rev. 1.7 11/03
STM8S
AD Converter Data alignment
ADC_DRH
– ADC data register high (Address offset: 0x04)
ADC_DRL
– ADC data register low (Address offset: 0x05)
RM0016. STM8S microcontroller family. Reference manual.
STMicroelectronics. December 2009, Doc ID 14587 Rev 6
Right Alignment
Left Alignment
D9 D8
D3 D2 D1 D0
D5 D4
D7 D6
ADC_DRH
ADC_DRL
D9 D8
D3 D2
D5 D4
D7 D6
D1 D0
ADC_DRH
ADC_DRL
Jak napisać program w C ?
[1/2]
C576
(Philips Semiconductors)
ADC0H (MSByte)
addr = 0AAh
ADC0L (LSByte)
addr = 09Ah
bit
9
bit
8
bit
7
bit
6
bit
5
bit
4
bit
3
bit
2
bit
1
bit
0
0
0
0
0
channel result
0
0
ADC1H (MSByte)
addr = 0ABh
ADC1L (LSByte)
addr = 09Bh
ADC2H (MSByte)
addr = 0ACh
ADC2L (LSByte)
addr = 09Ch
ADC5H (MSByte)
addr = 0AFh
ADC5L (LSByte)
addr = 09Fh
..................................................
................................................
Devices should not be used for new designs!
This product has been discontinued
83C576/87C576. 80C51 8-bit microcontroller family.
Philips Semiconductors, Jun 04, 1998
Jak napisać program w C ?
[2/2]
ADC Data Register
(ADDR – RW, undefined)
–
LPC213x
ADC Global Data Register
(AD0GDR, AD1GDR)
–
LPC214x
Converter0: AD0DR - 0xE003 4004
Converter0: AD1DR - 0xE006 0004
contains the ADC’s
DONE
bit and (when DONE is 1) the 10-bit result of the
most recent A/D conversion
ADDR / ADGDR
(ADC Data Register):
15
0
DATA
5
? ? ? ? ?
6
x x x x x x
x x x x
? ? ? ?
? ? ? ?
? ? ? ?
0
0 ? ?
16
23
24
26
31
?
DONE
while ( ! (ADDR & 0x8000 0000));
result = (ADDR & (0x3FF << 6)) >> 6;
UM10120. LPC2131/2/4/6/8 User manual.
NXP, Rev. 02 - 25 July 2006
5
ATmega8
The
ADC
features a
noise canceler
that enables conversion during sleep
mode to reduce noise induced from the CPU core and other I/O
peripherals. The noise canceler can be used with ADC Noise Reduction
and Idle mode. To make use of this feature, the following procedure should
be used:
Make sure that the ADC is enabled and is not busy converting.
Single
Conversion mode must be selected and the ADC conversion
complete interrupt must be enabled
.
Enter ADC Noise Reduction mode (or Idle mode).
The ADC will start a
conversion once the CPU has been halted
.
If no other interrupts occur before the ADC conversion completes, the
ADC interrupt will wake up the CPU
and execute the ADC
Conversion Complete interrupt routine.
ATmega8. 8-bit with 8K Bytes In-System Programmable Flash.
Atmel 2002, Rev. 2486H–AVR–09/02
ATmega8
PCB
Analog Noise Canceling Techniques
:
Keep
analog signal paths as short
as
possible. Make sure analog tracks run
over the analog ground plane, and
keep
them
well
away from high-speed
switching digital tracks
.
A
VCC
pin on the device should be
connected to the digital
VCC supply
voltage via an LC network
Use
ADC noise canceler
function to reduce induced noise from the CPU
If any ADC port pins are used as
digital outputs
, it is essential that these
do
not switch while a conversion is in progress
ATmega8. 8-bit with 8K Bytes In-System Programmable Flash.
Atmel 2002, Rev. 2486H–AVR–09/02
100nF
10
µ
A
n
a
lo
g
G
ro
u
n
d
P
la
n
e
MSP430
PCB
MSP430xG461x. MIXED SIGNAL MICROCONTROLLER
Texas Instruments, SLAS508G, REVISED OCTOBER 2007
Digital Power
Supply Decoupling
Analog Power
Supply Decoupling
Using an External
Positive Reference
Using the Internal
Reference Generator
Using an External
Negative Reference
Cortex-M3
STM32F101xx
STM32F101x6, STM32F101x8 STM32F101xB.
STMicroelectronics, Rev. 7, May 2008
Figure 29. Power supply and reference
decoupling
(V
REF
+ not connected to V
DDA
)
Figure 30. Power supply and reference
decoupling
(V
REF
+ connected to V
DDA
)
PCB
Power
Ground
Route
Embedded
Advantages:
–
Signal traces shielded and protected
–
Lower impedance, lower emissions and
crosstalk
Disadvantages:
–
Difficult prototyping and troubleshooting
–
Decoupling may be more difficult
Power
Ground
Route
not Embedded
Route
Op Amp Applications. Hardware and Housekeeping Techniques.
Chapter 7. Analog Devices. Analog Dialogue, Volume 39, 2005
PCB
Figure 2. When low noise precautions
are not taken during circuit design
and board layout, a 12-bit ADC
system under-performs with
approximately 5.45-bit accuracy (or
5.45 Effective Number of Bits).
Figure 3. If low noise, active and
passive devices are used, a ground
plane is included, by-pass
capacitors are added and a low-
pass (anti-aliasing) filter is placed
in the signal path. The code width
of 1024 samples is equal to one.
Bonnie C. Baker: Techniques that Reduce System Noise in ADC Circuits.
Microchip Technology, Analog Design Note ADN007
6
Multi—Slope ADCs
(1/3)
R
1
C
V
CC
t
V
C
V
CC
Phase 1
t
1
= –R
2
∗
C
∗
ln = N
∗
t
CLK
V
C
R
2
K
2
K
1
Charge
C
K1 - ON
K2 - OFF
V
REF
Phase 2
Discharge
C
K1 - OFF
K2 - ON
t
1
V
REF
V
CC
N = –R
2
∗∗∗∗
C
∗∗∗∗
f
CLK
∗∗∗∗
ln
V
REF
V
CC
MSP430x4xx Family. User’s Guide. Mixed Signal Products.
Texas Instruments SLAU056C, 2003
Multi—Slope ADCs
(2/3)
R
1
C
V
CC
t
V
C
V
CC
Phase 1
V
C
R
2
K
2
K
1
Charge
C
K1 - ON
K2 - OFF
K4 - OFF
V
REF
Phase 2
Discharge
C
K1 - OFF
K2 - ON
K4 - OFF
t
1
–R
4
∗
C
∗
f
CLK
∗
ln
V
REF
V
CC
R
4
K
4
Phase 3
Charge
C
K1 - ON
K2 - OFF
K4 - OFF
Phase 4
Discharge
C
K1 - OFF
K2 - OFF
K4 - ON
t
4
–R
2
∗
C
∗
f
CLK
∗
ln
V
REF
V
CC
N
4
N
2
=
N
4
N
2
R
4
= R
2
Multi—Slope ADCs
(3/3)
To get a resolution of N bits, the capacitor C must have a minimum capacity:
–2
N
R
XMIN
∗∗∗∗
f
CLK
∗∗∗∗
ln
C >
V
REFMAX
V
CC
f
CLK
measurement frequency in Hertz
R
XMIN
lowest resistance of sensor or reference resistor in Ohms
V
REFMAX
maximum value for threshold voltage V
REF
in Volts
MSP430
GPIO
&
Comparator
Temperature Measurement System
MSP430x4xx Family. User’s Guide. Mixed Signal Products.
Texas Instruments SLAU056C, 2003
Figure 1: 1-Bit DAC:
Changeover
Switch (Single-
Pole, Double
Throw, SPDT)
Simplest DAC Architectures
Kester W.: Basic DAC Architectures I: String DACs and Thermometer (Fully Decoded)
DACs. Analog Devices, 2008, MT-014 TUTORIAL, Rev.A, 10/08
R-2R Network DAC
Architectures
Figure 5: Voltage-Mode R-2R Ladder Network DAC
7
12-bit DA Converters
C8051F00x
D
11
D
10
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
-
-
-
-
D
11
D
10
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
-
-
-
-
1xx
010
D
11
D
10
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
-
-
-
-
000
DAC0L (0D2h)
DAC1L (0D5h)
DAC0H (0D3h)
DAC1H (0D6h)
DACx
DACx
V
DD
DACxEN
.....
.....
V
REF
Data is latched into DAC0 after a write to the corresponding DAC0H
register, so the write sequence should be DAC0L followed by DAC0H if the
full 12-bit resolution is required.
C8051F00x/1/2/5/6/7. Mixed-Signal 32KB ISP FLASH MCU Family.
Silicon Laboratories, 2003, Rev. 1.7 11/03
12-bit DA Converters
C8051F00x - Dynamic Performance
C8051F00x/1/2/5/6/7. Mixed-Signal 32KB ISP FLASH MCU Family.
Silicon Laboratories, 2003, Rev. 1.7 11/03
Voltage Output Slew Rate
Load = 40pF
0.44
TYP
V/
µ
s
Output Settling Time To ½ LSB
Output swing from code
0xFFF to 0x014
10
TYP
µ
s
Startup Time
DAC Enable asserted
10
TYP
µ
s
CURRENT CONSUMPTION (each DAC)
Power Supply Current (AV+
supplied to DAC)
Data Word = 0x7FF
110
TYP
400
MAX
µ
A
PWM
(1/2)
V
C
t
τ
T
0,
0
≤
t < T -
τ
V
C
,
T -
τ ≤
t < T
U(t) =
U(t)
{
Warto
ść
ś
rednia: U
sr
=
T
1
U(t) dt = V
C
∗
∫
0
T
T
τ
PWM
(2/2)
B = 0
B = 1
B = 2
B = 3
B = 4
B = 5
B = 6
B = 7
A0 A1 A2
C0 C1 C2
Licznik
B0
B1
B2
A < B
R
e
je
s
tr
P
W
M
komparator
C = 0
A = 0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
Licznik
Komparator
DPM - Distributed Pulse Modulation
np. P82C150 SLIO (Philips)
C = 0
A = 0
1
4
2
2
3
6
4
1
5
5
6
3
7
7
B = 0
B = 1
B = 2
B = 3
B = 4
B = 5
B = 6
B = 7
A0 A1 A2
C0 C1 C2
Licznik
B0
B1
B2
A < B
R
e
je
s
tr
P
W
M
komparator
Licznik
Komparator
Źródło prądowe
zmienne obci
ąż
enie R
VAR
i rezystor wzorcowy R
REF
warto
ść
pr
ą
du obci
ąż
enia I
L
:
programowa modulacja szeroko
ś
ci impulsów aby V
AC
= V
COMPREF
I
L
=
∗
V
CC
R
REF
R
2
R
1
+ R
2
we A/C
wy PWM
V
CC
AV
REF
AV
SS
V
SS
COMPREF
+
–
R
REF
R
VAR
R
2
R
1
8
4-wire touch screen
consists of
two
transparent resistive
layers
separated by
insulating spacers
Touch
Screen
Controller
TSC2008. Micro TOUCH SCREEN CONTROLLER with SPI.
Texas Instruments, SBAS406B, Rev MARCH 2009
4-wire touch screen
panel
works
by applying a
voltage across
the
vertical
or
horizontal resistive network
A/D converter converts
the
voltage measured
at the point where the
panel is
touched
Touch Screen Controller
Figure 25. Simplified Diagram of Single-
Ended Reference
measurement
of the current
Y position
of the pointing device is
made by connecting:
−
X+ input to the A/D converter
,
−
turning on Y+ and Y– drivers
and
digitizing voltage on X+
in
some applications
,
external
capacitors
may be required across
the touch screen to filter noise picked
up by the touch screen (that is,
noise
generated by the LCD panel or
backlight circuitry
) - these
capacitors provide a low-pass filter to
reduce the noise
Touch Screen Controller
standard
SPI bus
V
CC
= 1.2V to 3.6V