Zadania z rachunku prawdopodobieństwa dla grup 202, 207 i 209
Ćwiczenia 4, 29 X 2004
A. Prawdopodobieństwo warunkowe.
1. W urnie jest b kul białych i c kul czarnych. Po wylosowaniu kuli zwracamy
ją do urny i dokładamy d kul tego samego koloru. Jaka jest szansa otrzymania
kolejno kuli białej, czarnej, białej i czarnej? A czarnej, czarnej, białej i białej?
Czy da się sformułować ogólne twierdzenie?
2. Spośród rodzin z dwojgiem dzieci wylosowano jedną i okazało się, że a)
starsze dziecko jest chłopcem; b) co najmniej jedno dziecko jest chłopcem. Jaka
jest w obu przypadkach szansa na to, by rodzina miała dwóch synów? Czy
w b) przypadkiem uzyskana informacja, że jedno z dzieci ma na drugie imię
Kazimierz, zmieni ocenę szans?
3. Brydżysta dostał 13 kart z 52, obejrzał jedną i stwierdził, że nie ma asa.
Obejrzał kolejne 5 i znów nie trafił na asa. Obejrzał jeszcze 4 i nie zobaczywszy
asa stwierdził, że prawie na pewno wśród pozostałych kart nie ma asa. Odtwo-
rzyć rozumowanie brydżysty.
4. Ola i Jola umówiły się między 12 a 13 w centrum miasta; ta, która przyj-
dzie pierwsza, czeka 15 minut. Jola już wie, że przed 12:30 na pewno nie przyj-
dzie. Jaka jest szansa, że dojdzie do spotkania?
B. Wzór na prawdopodobieństwo całkowite i wzór Bayesa.
5. Wykonano dwie serie po n rzutów symetryczną monetą. Jaka jest szansa,
że w obu seriach wypadło tyle samo orłów?
Everybody knows that
the dice are loaded
(L. Cohen).
6. Są dwie kostki symetryczne i jedna obciążona, na której szóstka wypada
z prawdopodobieństwem 1/10, a pozostałe wyniki mają równe szanse. Wybrano
losowo kostkę i w 7 rzutach nie uzyskano ani jednej szóstki. Obliczyć prawdo-
podobieństwo, że kostka jest obciążona.
7. Rzucamy monetą do chwili uzyskania dwóch orłów z rzędu. Jaka jest
szansa, że gra zakończy się w parzystej liczbie rzutów?
1