dk3171 fm

background image

Bubbles, Drops,

and Particles in

Non-Newtonian Fluids

SECOND EDITION

R. P. Chhabra

Indian Institute of Technology

Kanpur, India

DK3171_half-series-title 5/12/06 10:42 AM Page i

© 2007 by Taylor & Francis Group, LLC

background image

The photograph on the cover is based on the photographs kindly provided by Dr. Angus Paterson, Pater-

son and Cooke Consulting Engineers, Cape Town, South Africa; Professor I. Frigaard, University of Brit-

ish Columbia, Vancouver, Canada; and Professor I.L. Kliakhandler, Michigan Technological University,

Houghton, Michigan.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300

Boca Raton, FL 33487-2742

© 2007 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper

10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 0-8247-2329-5 (Hardcover)

International Standard Book Number-13: 978-0-8247-2329-3 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted material

is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable

efforts have been made to publish reliable data and information, but the author and the publisher cannot

assume responsibility for the validity of all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,

mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,

and recording, or in any information storage or retrieval system, without written permission from the

publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.

com

(http://www.copyright.com/)

or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood

Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and

registration for a variety of users. For organizations that have been granted a photocopy license by the

CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are

used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Chhabra, R. P.

Bubbles, drops, and particles in non-Newtonian fluids / Raj P. Chhabra.-- 2nd

ed.

p. cm. -- (Chemical industries series ; 113)

Includes bibliographical references and indexes.

ISBN-13: 978-0-8247-2329-3 (acid-free paper)

ISBN-10: 0-8247-2329-5 (acid-free paper)

1. Non-Newtonian fluids--Textbooks. 2. Fluid mechanics--Textbooks. I. Title. II.

Chemical industries ; v. 113.

QC189.5.C55 2006

620.1’06--dc22

2006003734

Visit the Taylor & Francis Web site at

http://www.taylorandfrancis.com

and the CRC Press Web site at

http://www.crcpress.com

DK3171_Discl.indd 1

6/16/06 1:53:44 PM

© 2007 by Taylor & Francis Group, LLC

background image

CHEMICAL INDUSTRIES

A Series of Reference Books and Textbooks

Consulting Editor

HEINZ HEINEMANN

Berkeley, California

1.

Fluid Catalytic Cracking with Zeolite Catalysts, Paul B. Venuto

and E. Thomas Habib, Jr.

2.

Ethylene: Keystone to the Petrochemical Industry,

Ludwig Kniel, Olaf Winter, and Karl Stork

3.

The Chemistry and Technology of Petroleum,

James G. Speight

4.

The Desulfurization of Heavy Oils and Residua,

James G. Speight

5.

Catalysis of Organic Reactions, edited by William R. Moser

6.

Acetylene-Based Chemicals from Coal and Other Natural

Resources, Robert J. Tedeschi

7.

Chemically Resistant Masonry, Walter Lee Sheppard, Jr.

8.

Compressors and Expanders: Selection and Application

for the Process Industry, Heinz P. Bloch, Joseph A. Cameron,
Frank M. Danowski, Jr., Ralph James, Jr.,
Judson S. Swearingen, and Marilyn E. Weightman

9.

Metering Pumps: Selection and Application, James P. Poynton

10.

Hydrocarbons from Methanol, Clarence D. Chang

11.

Form Flotation: Theory and Applications, Ann N. Clarke

and David J. Wilson

12.

The Chemistry and Technology of Coal, James G. Speight

13.

Pneumatic and Hydraulic Conveying of Solids, O. A. Williams

14.

Catalyst Manufacture: Laboratory and Commercial

Preparations, Alvin B. Stiles

DK3171_half-series-title 5/12/06 10:42 AM Page B

© 2007 by Taylor & Francis Group, LLC

background image

15.

Characterization of Heterogeneous Catalysts, edited by

Francis Delannay

16.

BASIC Programs for Chemical Engineering Design,

James H. Weber

17.

Catalyst Poisoning, L. Louis Hegedus and Robert W. McCabe

18.

Catalysis of Organic Reactions, edited by John R. Kosak

19.

Adsorption Technology: A Step-by-Step Approach to Process

Evaluation and Application, edited by Frank L. Slejko

20.

Deactivation and Poisoning of Catalysts, edited by

Jacques Oudar and Henry Wise

21.

Catalysis and Surface Science: Developments in Chemicals

from Methanol, Hydrotreating of Hydrocarbons, Catalyst
Preparation, Monomers and Polymers, Photocatalysis
and Photovoltaics, edited by Heinz Heinemann
and Gabor A. Somorjai

22.

Catalysis of Organic Reactions, edited by Robert L. Augustine

23.

Modern Control Techniques for the Processing Industries,

T. H. Tsai, J. W. Lane, and C. S. Lin

24.

Temperature-Programmed Reduction for Solid Materials

Characterization, Alan Jones and Brian McNichol

25.

Catalytic Cracking: Catalysts, Chemistry, and Kinetics,

Bohdan W. Wojciechowski and Avelino Corma

26.

Chemical Reaction and Reactor Engineering, edited by

J. J. Carberry and A. Varma

27.

Filtration: Principles and Practices: Second Edition,

edited by Michael J. Matteson and Clyde Orr

28.

Corrosion Mechanisms, edited by Florian Mansfeld

29.

Catalysis and Surface Properties of Liquid Metals and Alloys,

Yoshisada Ogino

30.

Catalyst Deactivation, edited by Eugene E. Petersen

and Alexis T. Bell

31.

Hydrogen Effects in Catalysis: Fundamentals and Practical

Applications, edited by Zoltán Paál and P. G. Menon

32.

Flow Management for Engineers and Scientists,

Nicholas P. Cheremisinoff and Paul N. Cheremisinoff

33.

Catalysis of Organic Reactions, edited by Paul N. Rylander,

Harold Greenfield, and Robert L. Augustine

34.

Powder and Bulk Solids Handling Processes: Instrumentation

and Control, Koichi Iinoya, Hiroaki Masuda,
and Kinnosuke Watanabe

35.

Reverse Osmosis Technology: Applications for High-Purity-

Water Production, edited by Bipin S. Parekh

36.

Shape Selective Catalysis in Industrial Applications,

N. Y. Chen, William E. Garwood, and Frank G. Dwyer

37.

Alpha Olefins Applications Handbook, edited by

George R. Lappin and Joseph L. Sauer

DK3171_half-series-title 5/12/06 10:42 AM Page C

© 2007 by Taylor & Francis Group, LLC

background image

38.

Process Modeling and Control in Chemical Industries,

edited by Kaddour Najim

39.

Clathrate Hydrates of Natural Gases, E. Dendy Sloan, Jr.

40.

Catalysis of Organic Reactions, edited by Dale W. Blackburn

41.

Fuel Science and Technology Handbook, edited by

James G. Speight

42.

Octane-Enhancing Zeolitic FCC Catalysts, Julius Scherzer

43. Oxygen in Catalysis, Adam Bielanski and Jerzy Haber
44.

The Chemistry and Technology of Petroleum: Second Edition,

Revised and Expanded, James G. Speight

45.

Industrial Drying Equipment: Selection and Application,

C. M. van’t Land

46.

Novel Production Methods for Ethylene, Light Hydrocarbons,

and Aromatics, edited by Lyle F. Albright, Billy L. Crynes,
and Siegfried Nowak

47.

Catalysis of Organic Reactions, edited by William E. Pascoe

48.

Synthetic Lubricants and High-Performance Functional Fluids,

edited by Ronald L. Shubkin

49.

Acetic Acid and Its Derivatives, edited by Victor H. Agreda

and Joseph R. Zoeller

50.

Properties and Applications of Perovskite-Type Oxides,

edited by L. G. Tejuca and J. L. G. Fierro

51.

Computer-Aided Design of Catalysts, edited by

E. Robert Becker and Carmo J. Pereira

52.

Models for Thermodynamic and Phase Equilibria Calculations,

edited by Stanley I. Sandler

53.

Catalysis of Organic Reactions, edited by John R. Kosak

and Thomas A. Johnson

54.

Composition and Analysis of Heavy Petroleum Fractions,

Klaus H. Altgelt and Mieczyslaw M. Boduszynski

55.

NMR Techniques in Catalysis, edited by Alexis T. Bell

and Alexander Pines

56.

Upgrading Petroleum Residues and Heavy Oils,

Murray R. Gray

57.

Methanol Production and Use, edited by Wu-Hsun Cheng

and Harold H. Kung

58.

Catalytic Hydroprocessing of Petroleum and Distillates,

edited by Michael C. Oballah and Stuart S. Shih

59.

The Chemistry and Technology of Coal: Second Edition,

Revised and Expanded, James G. Speight

60.

Lubricant Base Oil and Wax Processing, Avilino Sequeira, Jr.

61.

Catalytic Naphtha Reforming: Science and Technology,

edited by George J. Antos, Abdullah M. Aitani,
and José M. Parera

62.

Catalysis of Organic Reactions, edited by Mike G. Scaros

and Michael L. Prunier

DK3171_half-series-title 5/12/06 10:42 AM Page D

© 2007 by Taylor & Francis Group, LLC

background image

63.

Catalyst Manufacture, Alvin B. Stiles and Theodore A. Koch

64.

Handbook of Grignard Reagents, edited by Gary S. Silverman

and Philip E. Rakita

65.

Shape Selective Catalysis in Industrial Applications:

Second Edition, Revised and Expanded, N. Y. Chen,
William E. Garwood, and Francis G. Dwyer

66.

Hydrocracking Science and Technology, Julius Scherzer

and A. J. Gruia

67.

Hydrotreating Technology for Pollution Control: Catalysts,

Catalysis, and Processes, edited by Mario L. Occelli
and Russell Chianelli

68.

Catalysis of Organic Reactions, edited by Russell E. Malz, Jr.

69.

Synthesis of Porous Materials: Zeolites, Clays,

and Nanostructures, edited by Mario L. Occelli
and Henri Kessler

70.

Methane and Its Derivatives, Sunggyu Lee

71.

Structured Catalysts and Reactors, edited by Andrzej Cybulski

and Jacob A. Moulijn

72.

Industrial Gases in Petrochemical Processing,

Harold Gunardson

73.

Clathrate Hydrates of Natural Gases: Second Edition,

Revised and Expanded, E. Dendy Sloan, Jr.

74.

Fluid Cracking Catalysts, edited by Mario L. Occelli

and Paul O’Connor

75.

Catalysis of Organic Reactions, edited by Frank E. Herkes

76.

The Chemistry and Technology of Petroleum: Third Edition,

Revised and Expanded, James G. Speight

77.

Synthetic Lubricants and High-Performance Functional Fluids:

Second Edition, Revised and Expanded, Leslie R. Rudnick
and Ronald L. Shubkin

78.

The Desulfurization of Heavy Oils and Residua,

Second Edition, Revised and Expanded, James G. Speight

79.

Reaction Kinetics and Reactor Design: Second Edition,

Revised and Expanded, John B. Butt

80.

Regulatory Chemicals Handbook, Jennifer M. Spero,

Bella Devito, and Louis Theodore

81.

Applied Parameter Estimation for Chemical Engineers,

Peter Englezos and Nicolas Kalogerakis

82.

Catalysis of Organic Reactions, edited by Michael E. Ford

83.

The Chemical Process Industries Infrastructure: Function

and Economics, James R. Couper, O. Thomas Beasley,
and W. Roy Penney

84.

Transport Phenomena Fundamentals, Joel L. Plawsky

85.

Petroleum Refining Processes, James G. Speight

and Baki Özüm

DK3171_half-series-title 5/12/06 10:42 AM Page E

© 2007 by Taylor & Francis Group, LLC

background image

86.

Health, Safety, and Accident Management in the Chemical

Process Industries, Ann Marie Flynn and Louis Theodore

87.

Plantwide Dynamic Simulators in Chemical Processing

and Control, William L. Luyben

88.

Chemical Reactor Design, Peter Harriott

89.

Catalysis of Organic Reactions, edited by Dennis G. Morrell

90.

Lubricant Additives: Chemistry and Applications, edited by

Leslie R. Rudnick

91.

Handbook of Fluidization and Fluid-Particle Systems,

edited by Wen-Ching Yang

92.

Conservation Equations and Modeling of Chemical

and Biochemical Processes, Said S. E. H. Elnashaie
and Parag Garhyan

93.

Batch Fermentation: Modeling, Monitoring, and Control,

Ali Çinar, Gülnur Birol, Satish J. Parulekar, and Cenk Ündey

94.

Industrial Solvents Handbook, Second Edition,

Nicholas P. Cheremisinoff

95.

Petroleum and Gas Field Processing, H. K. Abdel-Aal,

Mohamed Aggour, and M. Fahim

96.

Chemical Process Engineering: Design and Economics,

Harry Silla

97.

Process Engineering Economics, James R. Couper

98.

Re-Engineering the Chemical Processing Plant: Process

Intensification, edited by Andrzej Stankiewicz
and Jacob A. Moulijn

99.

Thermodynamic Cycles: Computer-Aided Design
and Optimization, Chih Wu

100.

Catalytic Naphtha Reforming: Second Edition,
Revised and Expanded, edited by George T. Antos
and Abdullah M. Aitani

101.

Handbook of MTBE and Other Gasoline Oxygenates,
edited by S. Halim Hamid and Mohammad Ashraf Ali

102.

Industrial Chemical Cresols and Downstream Derivatives,
Asim Kumar Mukhopadhyay

103.

Polymer Processing Instabilities: Control and Understanding,
edited by Savvas Hatzikiriakos and Kalman B . Migler

104.

Catalysis of Organic Reactions, John Sowa

105.

Gasification Technologies: A Primer for Engineers
and Scientists, edited by John Rezaiyan
and Nicholas P. Cheremisinoff

106.

Batch Processes, edited by Ekaterini Korovessi
and Andreas A. Linninger

107.

Introduction to Process Control, Jose A. Romagnoli
and Ahmet Palazoglu

108.

Metal Oxides: Chemistry and Applications, edited by
J. L. G. Fierro

DK3171_half-series-title 5/12/06 10:42 AM Page F

© 2007 by Taylor & Francis Group, LLC

background image

109.

Molecular Modeling in Heavy Hydrocarbon Conversions,
Michael T. Klein, Ralph J. Bertolacini, Linda J. Broadbelt,
Ankush Kumar and Gang Hou

110.

Structured Catalysts and Reactors, Second Edition, edited by
Andrzej Cybulski and Jacob A. Moulijn

111.

Synthetics, Mineral Oils, and Bio-Based Lubricants:
Chemistry and Technology, edited by Leslie R. Rudnick

112.

Alcoholic Fuels, edited by Shelley Minteer

113.

Bubbles, Drops, and Particles in Non-Newtonian Fluids,
Second Edition, R. P. Chhabra

DK3171_half-series-title 5/12/06 10:42 AM Page G

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page v — #5

To Neeru for her unconditional and

unlimited love; and to Millie and Rajat,

who wonder what I do all day

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page vii — #7

Preface to
the Second Edition

Since the publication of its first edition in 1993, significant advances have
occurred in this field that impinge on almost all topics covered in this book. This,
coupled with the fact that the first edition has been out of print for a while now,
prompted me to prepare a new edition of this book. The goals and the structure
of this edition are the same as in the first edition: to provide a reference text for
graduate students and researchers by presenting a comprehensive and critical
evaluation of the available extensive literature relating to the non-Newtonian
effects in multiphase flows encompassing single particles at one extreme and
concentrated systems such as porous media at the other extreme, and to provide
reliable estimation methods required by practicing professionals to perform
day-to-day routine design calculations relating to the process technology of non-
Newtonian fluids, such as the prediction of the settling velocity of individual
particles and concentrated suspensions or the frictional pressure drop in porous
media flows.

Bearing in mind the independent reviews of the first edition and the sug-

gestions made by the readers of the first edition, the entire book has been
reviewed. Where the need was recognized, the presentation has been improved
by reorganizing the material for easier understanding, new material to facilitate
comprehension has been added, and the most current viewpoints and research
results have been incorporated in this revised edition. Apart from the general
updating of all chapters, the specific changes made from the first edition are
summarized as follows.

The introductory material in

Chapter 1

has been completely overhauled and

greatly expanded to illustrate both the pervasive and the ubiquitous nature of
non-Newtonian fluid behavior as encountered in everyday life and in techno-
logy. In

Chapter 2,

a short section on extensional flow has been added due

to its direct relevance in porous media flows and in the growth of gaseous
inclusions in polymer melts and other non-Newtonian media encountered in
food-processing and geological engineering applications. New research res-
ults relating to the flow of time-independent fluids (without a yield stress) past
axisymmetric particles like a cylinder or a circular disk or spheroidal particles
have been incorporated into

Chapter 3.

Likewise, the corresponding body of

experimental results for the free settling behavior of a range of nonspherical

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page viii — #8

shapes of particles has been treated in detail in this chapter. Also, the interesting
behavior exhibited by ascending light spheres in quiescent polymer solutions
has now been introduced in this chapter. For added emphasis, the hydrodynam-
ics of rigid particles in visco-plastic media has now been treated separately in

Chapter 4.

Since the first edition, the significant advances made in the field of

particle motion in visco-elastic fluids, especially for the two benchmark prob-
lems of a sphere in a tube and a cylinder in a planar slit, are reflected in the
new look of

Chapter 5.

The treatment of the dynamics of bubbles and drops

and their ensembles in a wide variety of stagnant and moving non-Newtonian
media has been completely revised in

Chapter 6

to take into account the new

developments since the publication of the first edition. In particular, the meas-
urements of the detailed velocity fields close to the rising bubbles have been
included here. An extensive section on the flow of both Newtonian and non-
Newtonian liquids in fibrous media has been added to

Chapter 7.

The other

changes to this chapter include a slight expansion of the section on the use
of the volume averaging methods for modeling porous media flow and a new
section on the two-phase flow of a gas and a non-Newtonian liquid in packed
beds. The treatment of the role of visco-elasticity in liquid–solid fluidization and
in the sedimentation of concentrated suspensions of noninteracting particles has
been somewhat sharpened in

Chapter 8,

especially in view of the new evidence

showing the formation of preferred flow passages in these systems. The new

Chapter 9

presents an overview of the extensive literature on the non-Newtonian

effects in boundary layer flows and on the interphase heat/mass transfer from
particles immersed in a variety of non-Newtonian fluids. To highlight their sig-
nificance, the additional effects arising from the presence of confining walls on
the sedimentation of particles have now been treated on their own in a separate

Chapter 10. Chapter 11

has been considerably expanded by adding a whole

range of viscometers including the falling cylinder (needle) and the rolling ball
devices to evaluate a variety of non-Newtonian characteristics, all of which
are routinely used for monitoring the quality of a range of products during the
course of their manufacture. Finally, in this edition, the list of references cited
has been placed at the end of the text, for this format not only avoids duplication
between chapters, but it is also thought to be more convenient for the reader.

And lastly, I would like to thank the readers who have made such helpful

suggestions and have drawn my attention to the errors in the first edition, many
of which I would have never spotted myself. Please keep up the good work and
let me know if, no, not if, but when, you find errors in this edition.

R.P. Chhabra

Kanpur, India

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page ix — #9

Preface to
the First Edition

For the past 300 years or so, the simple Newtonian fluid model has been accep-
ted as the standard fluid behavior. Though most gases and low molecular weight
substances do exhibit this kind of fluid behavior, in recent years, there has been
an increasing recognition of the importance of non-Newtonian flow character-
istics displayed by most materials encountered in everyday life, both in nature
(gums, proteins, biological fluids such as blood, synovial fluid, etc.) and in tech-
nology (polymers and plastics, emulsions, slurries, etc.). Indeed, so widespread
is the non-Newtonian behavior that it would be no exaggeration to say that the
Newtonian fluid behavior is an exception rather than the rule. Consequently, the
last three to four decades have witnessed a remarkable upsurge of interest and
research activity in the mechanics of non-Newtonian fluids. An unprecedented
increase in the number of research papers, books, and conference proceedings
testifies to the rapid growth of this field. There are even specialized serial public-
ations (Journal of Rheology, Rheologica Acta, and Journal of Non-Newtonian
Fluid Mechanics
) devoted largely to the publication of new results in this area.

This book is neither about the non-Newtonian fluid behavior per se nor does

it purport even to touch on, let alone cover, all aspects of the non-Newtonian
fluid mechanics. Rather, it deals with a narrow but important class of prob-
lems involving the motion of small, rigid, and deformable particles (and their
ensembles) in a viscous medium. Although many years of research have been
devoted to the behavior of particles in Newtonian media, many challenging
problems in both theory and applications still remain unresolved. But even
more challenging is the subject of particle motion in non-Newtonian media,
such as the motion of oil drops in polymer solutions through a porous medium
during enhanced oil recovery, the dissolution of gas bubbles during ferment-
ation, the key role played by the bubbles encapsulated in the production of
foam plastics, etc. Equally important are the numerous applications involving
significant inter-particle interactions such as those encountered in the fluid flow
in packed and fluidized beds, bubble columns, slurry reactors, and in hindered
settling of concentrated suspensions. In spite of such overwhelming pragmatic
and fundamental significance, none of the existing books on non-Newtonian
fluid mechanics deals with these topics adequately. This book is an effort to

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page x — #10

fulfill this need. In particular, it has been written to accomplish the following
two specific goals:

1. To provide a reference text for research workers by way of presenting

a comprehensive and critical evaluation of the voluminous literat-
ure available on the particle motion in non-Newtonian media and
the related multiparticle process applications, as mentioned in the
foregoing.

2. To provide useful design information often required by practicing

scientists and engineers in day-to-day routine calculations such as
the estimation of the minimum fluidization velocity or the prediction
of pressure drop for flow through a fixed bed of particles, etc.

Aside from these two primary objectives, parts of the material presented herein
have been used at the Indian Institute of Technology in Kanpur in a first-year
graduate course on Engineering Applications of Rheology for the past 5 years.
Thus, depending upon one’s interest and taste, I believe that this material can
form a part of an elective course on Process Applications of Rheology for senior
undergraduate or first-year graduate students.

The limitations of this book should also be mentioned. The most important

of all is that it concentrates primarily on the free motion of spherical particles
under the influence of gravity. The scant work relating to the behavior of non-
spherical particles is included only by way of providing the pertinent references.
Likewise, no additional effects arising from the presence of electrical (electro-
rheological fluids) or magnetic fields, the compressibility of the fluids, etc. are
included unless specifically mentioned otherwise.

R.P. Chhabra

Kanpur, India

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page xi — #11

Acknowledgments

Every book is in part the product of the knowledge and enthusiasm of
the author’s friends. This one is no exception. It is a pleasure to acknow-
ledge the assistance I have received from many individuals during the course
of the preparation of this book. While it is impossible to acknowledge all of
them, I am particularly indebted to my Ph.D. advisor, Dr. Peter Uhlherr (retired
professor from Monash University, Melbourne) for introducing me to the fas-
cinating world of non-Newtonian fluids, and to my postdoc mentor, Professor
Jack Richardson (Professor Emeritus, University of Wales, Swansea) not only
for further sharpening my interest in the mechanics of these peculiar substances,
but, more importantly, for keeping me from going astray.

Over the past 25 years, I have greatly benefited from my collaborations with

the following friends from all over the world: Professor Tam Sridhar (Dean of
Engineering, Monash University), Professor Pierre Carreau (Ecole Polytech-
nique de Montreal), Professor Daniel DeKee (Tulane University), Professor
Rakesh Gupta (West Virginia University), Professor R. Shankar Subramanian
(Clarkson University), Professor Jacques Comiti (GEPEA, St. Nazaire),
Professor Jose Ferreira (Universidade de Tras-os-Montes e Alto Douro,
Vila Real, Portugal), Professors Evelyne Mauret and Maurice Renaud (both of
EFPG, INPG, Grenoble), Professor T. Sundararajan (Indian Institute of Tech-
nology, Chennai), and Professor V. Eswaran (Indian Institute of Technology,
Kanpur). Many others have been gracious and generous in responding to my
requests for their experimental results and for some of the photographs that
appear in this work. Thoughtful suggestions have consistently come from my
past and present students via their critical comments and alternate points of
view on many issues. It is impossible to mention everyone, but I would like to
single out Ram Prakash, Amit Dhiman, Sunil Dhole, and Nanda Kishore for
their extensive help with the preparation of this revised edition. I would also
like to thank Roopam Agarwal and Vandana Bhatnagar for their expert help
with some of the artwork used in this edition. The failures that remain are, of
course, entirely my responsibility and show my stubbornness.

I would also like to thank Anita Lekhwani, Jill Jurgensen, Elise Oranges

(all of Taylor & Francis) and Mohan (at Newgen Imaging Systems, Chennai)
for their patience and help at every stage of this project.

To live in close intimacy with a person obsessed with a single idea is never

an easy task. My family has been subjected to my obsession with these bizarre
fluids ever since I was introduced to them about 30 years ago. This book is

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page xii — #12

a small tribute to the patience and fortitude of my parents, my brother, and
his family, for their unquestioning support of my work and aspirations. It is not
customary to express gratitude to one’s wife in public, for she is considered to
be a part of the husband to the extent that her coauthorship is tacitly assumed
in any book her husband writes. There is little doubt that this book would not
have been possible without Neeru’s help.

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page xiii — #13

The Author

R.P. Chhabra is a professor of chemical engineering at the Indian Institute
of Technology, Kanpur. After receiving his B.S. and M.S. degrees in chem-
ical engineering from the University of Roorkee (now the Indian Institute of
Technology, Roorkee) and the Indian Institute of Science, Bangalore, respect-
ively, he obtained his Ph.D. from Monash University in Melbourne (Australia).
He has been a visiting professor at several universities, including the University
of New South Wales, Sydney; Clarkson University, Potsdam (NY); The State
University of New York at Buffalo; Ecole Polytechnique de Montreal; Uni-
versite de Nantes, Nantes; and the Cape Peninsula University of Technology,
Capetown.

Dr. Chhabra’s current teaching and research interests are in the general areas

of non-Newtonian fluid mechanics, multiphase flows, and transport properties
of molten metals and alloys. He has 6 books, 20 invited book chapters and
reviews, and over 200 technical papers to his credit. He is a recipient of the
Amar Dye Chem (1988) and the Herdillia (1996) awards (of the Indian Institute
of Chemical Engineers) for excellence in research. He is a Fellow of the Indian
National Academy of Engineering.

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page xv — #15

Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

1.1

Scope and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

Chapter 2 Non-Newtonian Fluid Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

2.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

2.2

Definition of a Newtonian Fluid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

2.3

Non-Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

2.3.1

Time-Independent Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

2.3.1.1

Shear-Thinning or Pseudoplastic Fluids . . . . . . . . . . .

15

2.3.1.2

Visco-Plastic Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

2.3.1.3

Shear-Thickening Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

2.3.2

Time-Dependent Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

2.3.2.1

Thixotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

2.3.2.2

Rheopexy or Negative Thixotropy . . . . . . . . . . . . . . . . .

30

2.3.3

Visco-Elastic Behavior of Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

2.3.3.1

Normal Stress Effects in Steady Shearing
Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

2.3.3.2

Elongational Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

2.3.3.3

Mathematical Models for Visco-Elastic
Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40

2.4

Dimensional Considerations in the Fluid Mechanics of
Visco-Elastic Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

2.5

Experimental Techniques: Rheometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

2.6

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

46

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

47

Chapter 3 Rigid Particles in Time-Independent Liquids without

a Yield Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

3.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

3.2

Governing Equations for a Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

3.3

Spherical Particles in Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53

3.3.1

Drag Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

3.3.2

Free-Fall Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

56

3.3.3

Unsteady Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page xvi — #16

3.4

Spheres in Shear-Thinning Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

3.4.1

Drag Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

3.4.1.1

Theoretical Developments in Creeping Flow
Region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

3.4.1.2

Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

76

3.4.1.3

Drag Force at High Reynolds Numbers . . . . . . . . . . .

85

3.4.2

Free-Fall Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

93

3.4.3

Flow Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

94

3.4.4

Unsteady Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

95

3.4.5

Effect of Imposed Fluid Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

98

3.5

Spheres in Shear-Thickening Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.6

Drag on Light Spheres Rising in Pseudoplastic Media . . . . . . . . . . . . . 101

3.7

Pressure Drop Due to a Settling Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.8

Nonspherical Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.8.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.8.2

Drag Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.8.2.1

Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.8.2.2

Shear-Thinning Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.9

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Chapter 4 Rigid Particles in Visco-Plastic Liquids . . . . . . . . . . . . . . . . . . . . . . . 123
4.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2

Spheres in Visco-Plastic Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.2.1

Static Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2.2

Flow Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2.3

Drag Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.2.3.1

Theoretical Developments . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2.3.2

Experimental Correlations . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.2.4

Values of Yield Stress Used in Correlations . . . . . . . . . . . . . . . . 147

4.2.5

Time-Dependence of Velocity in Visco-Plastic Fluids . . . . . 149

4.3

Flow Past a Circular Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.4

Flow Normal to a Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.5

Nonspherical Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.6

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Chapter 5 Rigid Particles in Visco-Elastic Fluids . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.2

Flow over a Sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.2.1

Theoretical Developments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page xvii — #17

5.2.1.1

Drag Force on an Unbounded (

β = 0) Sphere in

Creeping Region (Re

→ 0) ........................ 168

5.2.1.2

Drag Force on a Sphere for

β = 0.5 and

Re

→ 0: The Benchmark Problem ................ 172

5.2.1.3

Wake Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.2.2

Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.2.2.1

Shear-Thinning Visco-Elastic Liquids . . . . . . . . . . . . . 177

5.2.2.2

Nonshear-Thinning Visco-Elastic Liquids . . . . . . . . 182

5.2.3

The Time Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.2.4

Velocity Overshoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.2.5

Drag Reducing Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.3

Flow over a Long Circular Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.4

Interaction between Viscoelasticity, Particle Shape, Multiple
Particles, Confining Boundaries, and Imposed Fluid Motion . . . . . . . 194

5.5

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Chapter 6 Fluid Particles in Non-Newtonian Media . . . . . . . . . . . . . . . . . . . . . . 203
6.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.2

Formation of Fluid Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.2.1

Bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.2.1.1

Davidson–Schuler Model . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.2.1.2

Kumar–Kuloor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.2.2

Drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.2.2.1

Criterion I: Low Viscosity Systems. . . . . . . . . . . . . . . . 214

6.2.2.2

Criterion II: High Viscosity Systems . . . . . . . . . . . . . . 215

6.2.3

Disintegration (or Break Up) of Jets and Sheets . . . . . . . . . . . . 217

6.2.4

Growth or Collapse of Bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.3

Shapes of Bubbles and Drops in Free Rise or Fall . . . . . . . . . . . . . . . . . . 221
6.3.1

Newtonian Continuous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.3.2

Non-Newtonian Continuous Media . . . . . . . . . . . . . . . . . . . . . . . . . . 224

6.4

Terminal Velocity–Volume Behavior in Free Motion . . . . . . . . . . . . . . . 239

6.5

Drag Behavior of Single Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.5.1

Theoretical Developments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.5.1.1

Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

6.5.1.2

Shear-Thinning Continuous Phase . . . . . . . . . . . . . . . . . 251

6.5.1.3

Visco-Elastic Continuous Phase . . . . . . . . . . . . . . . . . . . 258

6.5.1.4

Non-Newtonian Drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

6.5.2

Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

6.6

Bubble and Drop Ensembles in Free Motion . . . . . . . . . . . . . . . . . . . . . . . . 264

6.7

Coalescence of Bubbles and Drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
6.7.1

Bubble Coalescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page xviii — #18

6.7.2

Drop Coalescence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

6.8

Breakage of Drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

6.9

Motion and Deformation of Bubbles and Drops in
Confined Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

6.10

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Chapter 7 Non-Newtonian Fluid Flow in Porous Media and

Packed Beds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

7.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

7.2

Porous Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
7.2.1

Definition of a Porous Medium, its Classification and
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

7.2.2

Description of a Porous Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

7.3

Newtonian Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
7.3.1

Flow Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

7.3.2

Pressure Loss — Throughput Relationship. . . . . . . . . . . . . . . . . . 288
7.3.2.1

Dimensionless Empirical Correlations . . . . . . . . . . . . 290

7.3.2.2

The Conduit or Capillary Models . . . . . . . . . . . . . . . . . . 293

7.3.2.3

The Submerged Objects Models or
Drag Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

7.3.2.4

Use of the Field Equations for Flow through
a Porous Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

7.3.2.5

Flow in Periodically Constricted Tubes . . . . . . . . . . . 304

7.3.2.6

Volume Averaging of the Navier–Stokes
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

7.3.3

Wall Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

7.3.4

Effects of Particle Shape, Particle Roughness, and
Size Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

7.3.5

Fibrous Porous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

7.3.6

Theoretical Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
7.3.6.1

Flow Parallel to an Array of Rods . . . . . . . . . . . . . . . . . 319

7.3.6.2

Transverse Flow over an Array of Rods . . . . . . . . . . . 320

7.3.6.3

Creeping Flow Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

7.3.6.4

Inertial Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

7.4

Non-Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
7.4.1

Flow Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

7.4.2

Pressure Loss for Generalized Newtonian Fluids . . . . . . . . . . . 342
7.4.2.1

The Capillary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

7.4.2.2

Submerged Object Models or Drag Theories . . . . . 356

7.4.2.3

Volume Averaging of Equations . . . . . . . . . . . . . . . . . . . 360

7.4.2.4

Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page xix — #19

7.4.3

Visco-Elastic Effects in Porous Media . . . . . . . . . . . . . . . . . . . . . . 362

7.4.4

Dilute/Semidilute Drag Reducing Polymer
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

7.4.5

Wall Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

7.4.6

Effect of Particle Shape and Size Distribution . . . . . . . . . . . . . . 373

7.4.7

Flow in Fibrous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
7.4.7.1

Generalized Newtonian fluids . . . . . . . . . . . . . . . . . . . . . 374

7.4.7.2

Visco-Elastic Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

7.4.8

Mixing in Packed Beds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

7.5

Miscellaneous Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
7.5.1

Polymer Retention in Porous Media . . . . . . . . . . . . . . . . . . . . . . . . . 382

7.5.2

Slip Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

7.5.3

Flow-Induced Mechanical Degradation of Flexible
Molecules in Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

7.6

Two-Phase Gas/Liquid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

7.7

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Chapter 8 Fluidization and Hindered Settling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
8.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

8.2

Two-Phase Fluidization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
8.2.1

Minimum Fluidization Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
8.2.1.1

Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

8.2.1.2

Prediction of V

mf

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

8.2.2

Bed Expansion Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
8.2.2.1

Inelastic Non-Newtonian Systems . . . . . . . . . . . . . . . . . 410

8.2.3

Effect of Visco-Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

8.3

Three-Phase Fluidized Beds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
8.3.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

8.3.2

Minimum Fluidization Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

8.3.3

Bed Expansion Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

8.3.4

Gas Holdup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

8.4

Sedimentation or Hindered Settling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
8.4.1

Non-Newtonian Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

8.5

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Chapter 9 Heat and Mass Transfer in Particulate Systems . . . . . . . . . . . . . . . 437
9.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

9.2

Boundary Layer Flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
9.2.1

Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
9.2.1.1

Forced Convection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page xx — #20

9.2.1.2

Free Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

9.2.1.3

Mixed Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

9.2.2

Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
9.2.2.1

Forced Convection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

9.2.2.2

Free Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

9.2.2.3

Mixed Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

9.2.3

Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
9.2.3.1

Forced Convection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

9.2.3.2

Free Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

9.2.3.3

Mixed Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

9.3

Visco-Elastic Effects in Boundary Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
9.3.1

Forced Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

9.3.2

Free Convection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

9.4

Bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
9.4.1

Large Peclet Number (Pe

 1) .............................. 496

9.4.2

Small Peclet Number

(Pe  1) .............................. 498

9.5

Drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

9.6

Ensembles of Bubbles and Drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

9.7

Fixed Beds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

9.8

Liquid–Solid Fluidized Beds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

9.9

Three-Phase Fluidized Beds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

9.10

Tube Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

9.11

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

Chapter 10 Wall Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
10.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

10.2

Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

10.3

Rigid Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
10.3.1

Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
10.3.1.1

Theoretical Treatments. . . . . . . . . . . . . . . . . . . . . . . . . . 523

10.3.1.2

Experimental Results and Correlations . . . . . . . . 527

10.3.2

Inelastic Non-Newtonian Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . 535
10.3.2.1

Theoretical and Numerical Treatments . . . . . . . . 535

10.3.2.2

Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

10.3.3

Visco-Plastic Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

10.3.4

Visco-Elastic Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
10.3.4.1

Boger Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

10.4

Nonspherical Rigid Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
10.4.1

Newtonian Liquids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

10.4.2

Inelastic Non-Newtonian Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . 548

10.5

Drops and Bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

© 2007 by Taylor & Francis Group, LLC

background image

RAJ: “dk3171_c000” — 2006/6/8 — 23:02 — page xxi — #21

10.5.1

Newtonian Continuous Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
10.5.1.1

Low Reynolds Number Regime . . . . . . . . . . . . . . . . 550

10.5.1.2

High Reynolds Number Regime. . . . . . . . . . . . . . . . 551

10.5.2

Non-Newtonian Continuous Phase . . . . . . . . . . . . . . . . . . . . . . . . 552

10.6

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

Chapter 11 Falling Object Rheometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
11.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

11.2

Falling Ball Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
11.2.1

Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

11.2.2

Non-Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
11.2.2.1

Zero-Shear Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

11.2.2.2

Shear-Dependent Viscosity . . . . . . . . . . . . . . . . . . . . . 568

11.2.2.3

Yield Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570

11.2.2.4

Characteristic Time for Visco-Elastic
Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

11.3

Rolling Ball Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
11.3.1

Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

11.3.2

Non-Newtonian Fluids (Shear-Dependent Viscosity) . . . . 574

11.3.3

Yield Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

11.4

Rotating Sphere Viscometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

11.5

Falling Cylinder Viscometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
11.5.1

Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

11.5.2

Non-Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
11.5.1.1

Shear-Dependent Viscosity . . . . . . . . . . . . . . . . . . . . . 581

11.5.1.2

Yield Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

11.6

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

© 2007 by Taylor & Francis Group, LLC


Document Outline


Wyszukiwarka

Podobne podstrony:
fm 2
FM zaocz W7 8 pp
AM FM SSB Empfänger Teil 1
FM listy id 178271 Nieznany
Lista odpowiedników FM Group
FEDERICO MAHORA-katalog, PRASA, FM Group
3 - Droga do Sukcesu - strona druga, fm, 45 sekundowa prezentacja, sekrety, teczka fm
FM wykłady FM 1 12 2011
fm gorzyce tloki silnikow nkpl
Analiza przepływu wody przez przekrój mostowy (FM)
FM do druku
mod 2007 8 FM
Ebook Us Army Fm 5 520 Commercial Explosives
FM wyklad 12 20 01 2011
DK3171 C006
fm
1817 fm
4. Produkty dla domu, FM - kosmetyki, Starocie

więcej podobnych podstron