!#"%$&(')*+ "#,-%*#.,
/102436587:9<;>=@?
ABDCFEHGJILKNM<O PRQ:MTS8UVK!WYX[Z]\<^`_ acb]d
R
⊂ X × Y
e
_ fDg.h _ igNZj\L^k_ a-b]l
S
=
{(y, x) ∈ Y × X: (x, y) ∈ R}
m
n
f
e
_ aLf<\
e
d`\ o
S
= R
−1
/102436587:9<;qp?
r%d`\La:sutvlLW@wxWY_
e
\
e
dy\<zY{}|]~\f<tYdyXZ]g
X
Y
Z
XZj_ fZ]\<^`_ acb]\
R
⊂ X × Y
XZj_ f
S
⊂ Y × Z
~:_Hdy\
@
\
∆
R
∩ D
S
6= ∅
m
M<TBDU@BDQ:BDCFEHGJI
R
S
e
_fLg.h _ig1Zj\L^k_ a-b]l
S
◦ R := {(x, z): ∃y ∈ Y (x, y) ∈ R ∧ (y, z) ∈ S}.
/102436587:9<;q?
&
QjETBD
MTQD
A
⊂ X
z}Zjf<\LfZ]\<^`_ acb]l
R
⊂ X × Y
e
_ fLg.h_ igNfLtYd` Z<o
R
(A) =
{y ∈ Y : ∃x ∈ A (x, y) ∈ R}
m
Q]TB:GDPM
Q]ETBD
MTQ
B
⊂ Y
z}Zjf<\LfZj\L^k_ a-b]l
R
⊂ X × Y
e
_fLg.h _igfLtYd`ZLo
R
−1
(B) =
{x ∈ X: ∃y ∈ B (x, y) ∈ R}
m
;@;@365J;
R;@;@3580=@?
%WYXhXW
e
d¡b
e
_ |]~jl<zY{Tbjwa<\!h#¢J_ |
e
X£]a<dZj\L^k_ a-b]dZjh
e
Xh_
<e
X £ja<d
R
⊂ X
2
o
_¤
∀x ∈ X: [x]
R
6= ∅
t(¤
S
x∈X
[x]
R
= X
a¤
[x]
∩ [y] 6= ∅ =⇒ [x] = [y]
R;@;@3580¥p?
¦
R
× R
W@_
e
\§|w¨Zj\L^k_ a-b]\ o
_¤
S
=
{(x, y): y = 2x + 3}
©
t(¤
T
=
{(x, y): y ≤ −x
2
− 2}
©
a¤
U
=
{(x, y): y ≥ log
2
x
}
m
¦xgHf
e
_ a<fDgª«Z]\<^`_ acb]\XW}h&Z]X ~
e
\WYX¬W@_
e
gHa:sXZ_ f+h&|jT_ f<_ ªiX
^ydyh\f®¢X
\
e
d`_~-gHa:s
Zj\<^`_ acb]d
m
A
B DSE P
ABDCFEHGJI
BM<O PRQ:MTS8U*B
EOE U@B§QBDCFEHGJI
R;@;@3580¥?
¦xgHf
e
_ a<fDgªi[X
^`dFh\fT¢X
\
e
dk_J{
e
acb]d
f
d
g
o
_¤
f
(x) =
−3x + 4
g
(x) = 5x + 1
©
t(¤
f
(x) = x
2
g
(x) =
−x
©
a¤
f
(x) =
−x
2
− 3
g
(x) = log
3
x
©
W(¤
f
(x) = arctg x +
π
2
g
(x) =
√
x
− π
m
R;@;@3580?
¦xgHT_
(
\+z}Z_
h&WYf<dFh\+|w
e
_|]~lLzY{Tbjw aL\+~-h&dy\<Z]WYf<\
e
dk_}o
_¤Nr%dy\<a:s
S
⊂ X
2
m
S
b]\<|~Zj\<^`_ acbjw
Z]h
e
Xh _
Le
X£]a<d
⇐⇒ S
−1
b]\<|~Zj\<^`_ acbjw
Z]h
e
Xh _
Le
X£]a<d
m
t(¤#_
e
\+|w«Z]\<^k_acb]\
S
⊂ X × Y
XZj_ f
T
⊂ Y × Z (∆
S
∩ D
T
6= ∅)
m
S
d
T
|j{YZ]d`\<~-g.h
e
\
=
⇒ T ◦ S
|j{}Zjd`\L~-gHh
e
_
m
R;@;@3580?
^k_XHW}h&f<XZ]Xh _
R
⊂ X × Y
X.Zj\L£j^`X
e
gHa:s
h
f
_W! Tf<\<|~#" "+f
_
hl
X
e
gHa:suWYX
XWYzVXh&d`\LW
e
d`a:s
f<tYdyXZjh
X
⊂ R, Y ⊂ R
h
gHf
e
_a<fXHW}h&f<XZ]Xh _
e
d`\XHW}h&Z]X ~
e
\
m
$6XHW@_®b4b]\&%X«h&f<Z
m
_¤
xRy
⇐⇒ x
2
− y
2
= 1
t(¤
xRy
⇐⇒ 3 + y = log
2
(x + 1)
a¤
xRy
⇐⇒ y = x
2
− 4
R;@;@3580'?
^k_
S
⊂ R × R
h
gHf
e
_a<fLgHª
S
(A)
d
S
−1
(B)
m
_¤
S
=
{(x, y): y = |x
2
− 2|}
A
= (
−2, 1)
B
=
1,
3
2
©
t(¤
S
=
n
(x, y): y =
| log
1
2
x
|
o
A
= (
−2, 1)
B
=
h1, 2)
©
a¤
S
=
(x, y): y = |arctg x +
π
4
|
A
= (
−
√
3,
−
√
3
3
)
m
R;@;@3580)(v?
*XfDh&dkw
!e
d`\<Z]h
e
X£jªo
_¤
arccos
x
x−2
<
arccos
1
2
x
©
t(¤
arcsin (0, 5 log(x + 1)) >
π
4
m
A
B DSE P
ABDCFEHGJI
BM<O PRQ:MTS8U*B
EOE U@B§QBDCFEHGJI
R;@;@3580?
r_ Zg|]{Tb&h
gH.Zj\L|]gJ{
e
acb]do
_¤
f
(x) =
| arcsin x −
π
4
|
©
t(¤
f
(x) = arccos(2x + 4)
©
a¤
f
(x) = arcctg (
−x + 1)
©
W(¤
f
(x) = arctg
|x| −
π
2
m