K1 2008 09 zad 1 id 229627

background image


Kolokwium I

rok 2008/2009

Zadanie 1:

Zbadać, czy pole wektorowe

F

= [

y

xze

2

2

2

2

2

2

2

3

cos

;

2

;

sin

z

z

x

e

x

ze

x

z

y

y

]

spełnia warunek

wystarczający istnienia potencjału i wyznaczyć ten potencjał.



Rozwiązanie:

Warunek konieczny do istnienia potencjału pola wektorowego

F

: Jeżeli pole wektorowe

F

jest potencjalne w całej

swojej dziedzinie

D

, to

0

)

,

,

(

z

y

x

F

rot

dla każdego

D

z

y

x

)

,

,

(

.

1) Sprawdzamy warunek konieczny istnienia potencjału pola wektorowego.

F

[

y

xze

2

2

2

2

2

2

2

3

cos

;

2

;

sin

z

z

x

e

x

ze

x

z

y

y

]

2

2

2

2

2

2

3

cos

2

sin

2

z

z

x

e

x

ze

x

z

xze

z

y

x

k

j

i

F

rot

y

y

y

=

= [

y

e

x

2

2

2

y

e

x

2

2

2

;

y

xe

z

2

2

cos

(

y

xe

z

2

2

cos

) ;

y

y

xze

xze

2

2

4

4

] = [

0

;

0

;

0

] =

0

.

Zatem

0

)

,

,

(

z

y

x

F

rot

oraz

3

R

D

- stąd

F

jest polem potencjalnym.

2) Wyznaczamy potencjał

)

,

,

(

z

y

x

f

taki, że

]

,

,

[

z

y

x

f

f

f

f

grad

, gdzie

z

y

x

f

R

f

Q

f

P

;

;

.

)

,

(

sin

)

sin

2

(

)

,

,

(

sin

2

2

2

2

2

z

y

C

z

x

z

e

x

dx

z

xze

z

y

x

f

z

xze

f

y

y

y

x

Obustronnie liczymy pochodną po

y

i otrzymujemy :

y

y

y

y

ze

x

Q

z

y

C

ze

x

f

2

2

2

2

2

)

,

(

2

0

)

,

(

z

y

C

y

Całkując obustronnie po

y

:

)

(

0

)

,

(

z

D

z

y

C

)

(

sin

)

,

,

(

2

2

z

D

z

x

z

e

x

z

y

x

f

y

liczymy pochodną po

z

:

2

2

2

2

2

3

cos

)

(

'

cos

z

z

x

e

x

R

z

D

z

e

x

f

y

y

z

2

3

)

(

'

z

z

D

Całkując otrzymamy:

A

z

z

D

3

)

(

Potencjał pola wektorowego

F

to:

A

z

z

x

z

e

x

z

y

x

f

y

3

2

2

sin

)

,

,

(

.

3) Sprawdzając poprawność rozwiązania liczymy czy :

F

f

grad

.

f

grad

= [

y

xze

2

2

2

2

2

2

2

3

cos

;

2

;

sin

z

z

x

e

x

ze

x

z

y

y

]=

F

Odp

owiedź:

Potencjał pola wektorowego

F

= [

y

xze

2

2

2

2

2

2

2

3

cos

;

2

;

sin

z

z

x

e

x

ze

x

z

y

y

]

j

est równy:

A

z

z

x

z

e

x

z

y

x

f

y

3

2

2

sin

)

,

,

(

, gdzie

A

jest dowolną stałą.




Autor: Dagmara Klos grupa 2

15.10.2013


Wyszukiwarka

Podobne podstrony:
K1 2008 09 zad 3 id 229628
K1 2008 09 zad 4 id 229629
K2 2008 09 zad 4 id 229677
K1 2008-09, zad. 5
K2 2008 09 zad 3 id 229676
K2 2008 09 zad 4 id 229677
K1 2007 08 zad 5 id 229626
E1 2008 09 zad 4
K1 2010 11 zad 3 id 229638
K1 2011 12 zad 3 id 229642
E1 2008 09 zad 5
K1 2011 12 zad 1 id 229641
K2 2008-09, zad. 2
K1 2010 11 zad 4 id 229639
K1 2010 11 zad 1 id 229636
K1 2010 11 zad 2 id 229637

więcej podobnych podstron