!"$#
%'&)(+*-,/.
0
&21435,7698:.<;>=
?A@CBEDGFCH:I@-JLKNM>OQPSRUT!OQV RXWZY\[^]E_`baSc^[ a:YZaSVdaSM2egfCTih
j5kbl-monpkpqblsrtm-u
#
A
v
=
A
0xw
,7.zy.>3,7.{3|.
w2}
,/(~*s.>6-
VdOV M[^c[^]E SWZ[CT!O
A
∪ B : = {x: x ∈ A ∨ x ∈ B}
YZ[) :PSR)MVdM[^c^[^]b :WZ[CTR7bP:a: SWZS :WZa
A
∩ B : = {x: x ∈ A ∧ x ∈ B}
f^SMWZ :OGVdM[c^[^]E SWZ[CTO
A
\ B : = {x: x ∈ A ∧ ∼ x ∈ B}
[^~a-MWZa:MWZaP:WZ[^
A
[bP:aSbegbP:aSMW
X
A
0
: = {x: x ∈ X∧ ∼ x ∈ A}
zWZf^[eE:c^[CTR
P(A): = {D : D ⊂ A}
OEM[]E :W
PSWO)OxM>OP:W\[^gOQ 9
A
∪ A = A
A
∩ A = A
A
∪ B = B ∪ A
A
∩ B = B ∩ A
A
∪ (A ∩ B) = A
A
∩ (A ∪ B) = A
A
∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
A
∪ ∅ = A
A
∩ ∅ = ∅
(A ∪ B)
0
= A
0
∩ B
0
(A ∩ B)
0
= A
0
∪ B
0
(A
0
)
0
= A
(∅)
0
= X
A
⊂ B =⇒ B
0
⊂ A
0
¡
(+¢~£~¤735,/(~3&¦¥
w
,7.zy.>3,7.§3|.
w2}
,7(+*s.>6-
VdONE¨[ :PS[^M>O
A
1
∪ A
2
∪ · · · ∪ A
n
: =
n
S
i
=1
A
i
YZ[) :PSR)MXE¨Q[^ SP:[^M2R
A
1
∩ A
2
∩ · · · ∩ A
n
: =
n
T
i
=1
A
i
VdONMWZaSE¨[ :PS[^M>O
A
1
∪ A
2
∪ A
3
∪ . . . =
∞
S
i
=1
A
i
: =
x
: ∃
i∈N
x
∈ A
i
YZ[) :PSR)MXMW\a:E¨Q[^ SP:[^M2R
A
1
∩ A
2
∩ A
3
∩ . . . =
∞
T
i
=1
A
i
: =
x
: ∀
i∈N
x
∈ A
i
F:I
I
!
FCH:I@-J
B"
#
/ObM[^]b :W
PSWO)O
[^c^f^Y\MWZ[MUR) 9
(
S
i∈I
A
i
)
0
=
T
i∈I
A
0
i
(
T
i∈I
A
i
)
0
=
S
i∈I
A
0
i
S
i∈I
(A
i
∪ B
i
) =
S
i∈I
A
i
∪
S
i∈I
B
i
T
i∈I
(A
i
∩ B
i
) =
T
i∈I
A
i
∩
T
i∈I
B
i
S
i∈I
(A
i
∩ B
i
) ⊂
S
i∈I
A
i
∩
S
i∈I
B
i
T
i∈I
(A
i
∪ B
i
) ⊃
T
i∈I
A
i
∪
T
i∈I
B
i
A
∪ (
S
i∈I
A
i
) =
S
i∈I
(A ∪ A
i
)
A
∩ (
S
i∈I
A
i
) =
S
i∈I
(A ∩ A
i
)
A
∪ (
T
i∈I
A
i
) =
T
i∈I
(A ∪ A
i
)
A
∩ (
T
i∈I
A
i
) =
T
i∈I
(A ∩ A
i
)
S
i∈I
A
i
\
S
i∈I
B
i
⊂
S
i∈I
(A
i
\ B
i
)
T
i∈I
A
i
\
T
i∈I
B
i
⊃
T
i∈I
(A
i
\ B
i
)
$
¤/( 6
w&%
3('.**)C&
w
8:.,+.-/' ,
w2}
,/(+*-£10
A
× B : = {(a, b): a ∈ A, b ∈ B}
OEM[]E :W|W\YZ[) :PSR)M
¨-ObeEa:P
`EOQE¨UWZaSc^[
A
× (B ∪ C) = (A × B) ∪ (A × C)
A
× (B ∩ C) = (A × B) ∩ (A × C)
A
× (B \ C) = (A × B) \ (A × C)
A
× B = B × A ⇐⇒ A = B
(X × Y ) \ (A × B) = [(X \ A) × Y ] ∪ [X × (Y \ B)]
F:I
I
!
FCH:I@-J
B"
.>¥|.>35,/.
.>¥|.>3,7&
;>=
gOT
PSWZ_gOT
PSW\T'[^]E_EOCT
a¦[^bc2OM>O
YZONP:W\[^EfCTih
.>¥|.>3,7&=
AR)P:MO :PoR_P:WZ[^pR
~[egSc^[CTa
PSWZ[^bfCT
A
= {1, 2, 3}
B
= {♣, ♠, F}
C
= {∅}
h
.>¥|.>3,7&=
AR)P:MO :PoR_
7M>OQbR)E[CTO_CP:W\[^bR
A
B
A
0
B
0
A
∪ B
A
∩ B
A
\ B
B
\ A
c
R
O2
A
=
x :
3x−1
5−x
≥ 4
B
=
n
x
: 3
log
0
.5
(x
2
−
5x+7)
<
1
o
+
A
=
n
x
: x
3
4
x
<
(
√
x
)
x
2
−x
+1
o
B
=
x : log
x−
3
x−
2
x−
4
≥ 1
h
.>¥|.>3,7&|=
$WZaS 9
I
= {1, 2, 3}
A
1
= {a, b, c, d}
A
2
= {c, d, e, f}
A
3
= {a, c, f, g}
h
AR)P:MO :PoR_
S
i∈I
A
i
[^gOP
T
i∈I
A
i
h
.>¥|.>3,7&=
AR)P:MO :PoR_
[^c^fYZMW\[^Ma
V RxW W\YZ[) :PSR)M2R
PSWZ[EfCT
O2
A
i
=
2 −
1
i
,
3 +
1
i
, i ∈ N
+
A
i
= {x ∈ R: x = sin i} , i ∈ R
CxE[
P:W\M>O¨f
K
(A, r)
[ ]Eb[
¨
T
M¨Q :WZa
A
= (x, 0)
W|E[^V WZaSMW
r >
0
h
AR)PSM>O :PoR)_
[
r∈R
+
K
(A, r),
\
r∈R
+
K
(A, r),
[
x∈R
K
(A, r),
\
x∈R
K
(A, r).
.>¥|.>3,7&=
AR)P:MO :PoR_
7M>OQbR)E[CTO_C
A
× B
B
× A
`ba:]bYZW
O2
A
= {−1, 2, 3}
B
= h0, 2)
+
A
= {x ∈ R: |x − 3| ≤ 2}
B
= {y : |y| ≥ 3}
C
A
= {x ∈ R: sin x ≥ cos x}
B
= {y : y ∈ R}
F:I
I
!
FCH:I@-J
B"
A
=
∞
T
n
=1
−
1
n
,
n
+1
n
B
=
∞
S
n
=1
B
n
, B
n
= {x ∈ R: x
2
+ n − 2 = 0}
h
.>¥|.>3,7&=
gOT
PSWZ_
Sa
A
× (B \ C) = (A × B) \ (A × C)
h