zestaw01 dzialania na zbiorach

background image

!"$#

%'&)(+*-,/.

0

&21435,7698:.<;>=

?A@CBEDGFCH:I@-JLKNM>OQPSRUT!OQV RXWZY\[^]E_`baSc^[a:YZaSVdaSM2egfCTih

j5kbl-monpkpqblsrtm-u

#

A

v

=

A

0xw

,7.zy.>3,7.{3|.

w2}

,/(~*s.>6-

€

VdO‚VMƒ[^c„[^]E…SWZ[CT!O

A

∪ B : = {x: x ∈ A ∨ x ∈ B}

†YZ[)…:PSR)M‡VdMˆ[^c^[^]b…:WZ[CTR‰7Šƒ‹bP:a:…SWZŒS…:WZaŽ

A

∩ B : = {x: x ∈ A ∧ x ∈ B}

f^‘SMƒWZ…:OGVdMƒ[„c^[^]E…SWZ[CT’O

A

\ B : = {x: x ∈ A ∧ ∼ x ∈ B}

“[^Š~a-”•MˆWZa:MˆWZa–P:—ˆWZ[^‹



A

˜

[‚Šƒ‹bP:aS™beg‹bP:aSMƒW

X

A

0

: = {x: x ∈ X∧ ∼ x ∈ A}

šz—ƒWZf^‹’Š›[„eEŒ:c^[CTR

P(A): = {D : D ⊂ A}

œ”•O„™EMƒ[„]E…:W

˜

PSWžO)”•O„ŸxM>O‚P:—ƒW\[^‹gOQ…9 

A

∪ A = A

A

∩ A = A

A

∪ B = B ∪ A

A

∩ B = B ∩ A

A

∪ (A ∩ B) = A

A

∩ (A ∪ B) = A

A

∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A

∪ ∅ = A

A

∩ ∅ = ∅

(A ∪ B)

0

= A

0

∩ B

0

(A ∩ B)

0

= A

0

∪ B

0

(A

0

)

0

= A

(∅)

0

= X

A

⊂ B =⇒ B

0

⊂ A

0

¡

(+¢~£~¤735,/(~3&¦¥

w

,7.zy.>3,7.§3|.

w2}

,7(+*s.>6-

€

VdON™E¨„[„Ÿƒ…:PS[^M>O

A

1

∪ A

2

∪ · · · ∪ A

n

: =

n

S

i

=1

A

i

†YZ[)…:PSR)MX™E¨Q[^Ÿƒ…SP:[^M2R

A

1

∩ A

2

∩ · · · ∩ A

n

: =

n

T

i

=1

A

i

€

VdONMƒWZaS™E¨„[„Ÿƒ…:PS[^M>O

A

1

∪ A

2

∪ A

3

∪ . . . =

S

i

=1

A

i

: =

x

: ∃

i∈N

x

∈ A

i

†YZ[)…:PSR)MXMƒW\a:™E¨Q[^Ÿƒ…SP:[^M2R

A

1

∩ A

2

∩ A

3

∩ . . . =

T

i

=1

A

i

: =

x

: ∀

i∈N

x

∈ A

i

background image

F:I

I

!

FCH:I@-J

B"

#

œ”/O„™bMƒ[^]b…:W

˜

PSWžO)”•O„Ÿ



[^c^f^Y\MƒWZ[„MUR)…9 

(

S

i∈I

A

i

)

0

=

T

i∈I

A

0
i

(

T

i∈I

A

i

)

0

=

S

i∈I

A

0
i

S

i∈I

(A

i

∪ B

i

) =

S

i∈I

A

i

S

i∈I

B

i

T

i∈I

(A

i

∩ B

i

) =

T

i∈I

A

i

T

i∈I

B

i

S

i∈I

(A

i

∩ B

i

) ⊂

S

i∈I

A

i

S

i∈I

B

i

T

i∈I

(A

i

∪ B

i

) ⊃

T

i∈I

A

i

T

i∈I

B

i

A

∪ (

S

i∈I

A

i

) =

S

i∈I

(A ∪ A

i

)

A

∩ (

S

i∈I

A

i

) =

S

i∈I

(A ∩ A

i

)

A

∪ (

T

i∈I

A

i

) =

T

i∈I

(A ∪ A

i

)

A

∩ (

T

i∈I

A

i

) =

T

i∈I

(A ∩ A

i

)

S

i∈I

A

i

\

S

i∈I

B

i

S

i∈I

(A

i

\ B

i

)

T

i∈I

A

i

\

T

i∈I

B

i

T

i∈I

(A

i

\ B

i

)

$

¤/(6

w&%

3('ˆ.ƒ**)C&

w

8:.,+.-/',

w2}

,/(+*-£10

A

× B : = {(a, b): a ∈ A, b ∈ B}

œ”•O„™EMƒ[„]E…:W|W\YZ[)…:PSR)M



¨-O„‹beEa:P

`EOQŸƒ™E¨UWZaSc^[

A

× (B ∪ C) = (A × B) ∪ (A × C)

A

× (B ∩ C) = (A × B) ∩ (A × C)

A

× (B \ C) = (A × B) \ (A × C)

A

× B = B × A ⇐⇒ A = B

(X × Y ) \ (A × B) = [(X \ A) × Y ] ∪ [X × (Y \ B)]

background image

F:I

I

!

FCH:I@-J

B"

.>¥|.>35,/.

.>¥|.>3,7&

;>=

€

Šƒ‹gOŽT

˜

PSWZ_Šƒ‹gOŽT

˜

PSW\T'[^]E_Šƒ‹EOCT

˜

a¦[^‹bc2O„M>O

˜

YZONP:—ƒW\[^‹EfCTih

.>¥|.>3,7&=

œAR)P:MƒO„…:PoR_P:—ˆWZ[^‹pR

Š~[„egŒSc^[CT’a

PS—ƒWZ[^‹bfCT

A

= {1, 2, 3}

B

= {♣, ♠, F}

C

= {∅}

h

.>¥|.>3,7&=

œAR)P:MƒO„…:PoR_

‰7M>OQ‹bR)™E[CT’O„_C–P:—ƒW\[^‹bR

A

B

A

0

B

0

A

∪ B

A

∩ B

A

\ B

B

\ A

c

˜

R

O2

A

=

x :


3x−1

5−x


≥ 4

B

=

n

x

: 3

log

0

.5

(x

2

5x+7)

<

1

o

—+

A

=

n

x

: x

3
4

x

<

(

x

)

x

2

−x

+1

o

B

=

x : log

x−

3

x−

2

x−

4

≥ 1

h

.>¥|.>3,7&|=

$WZaS…9 

I

= {1, 2, 3}

A

1

= {a, b, c, d}

A

2

= {c, d, e, f}

A

3

= {a, c, f, g}

h

œAR)P:MƒO„…:PoR_

S

i∈I

A

i

[^‹gO„P

T

i∈I

A

i

h

.>¥|.>3,7&=

œAR)P:MƒO„…:PoR_



[^c^f„YZMƒW\[^Mƒa

™



V RxWW\YZ[)…:PSR)M2R

PS—ƒWZ[„‹EfCT

O2

A

i

=

2 −

1

i

,

3 +

1

i

, i ∈ N

—+

A

i

= {x ∈ R: x = sin i} , i ∈ R

…Cx‹E[

˜

P:W\M>O‚¨„f”

K

(A, r)

[]E‹b[

˜

¨



TŠ



Mƒ¨Q…:WZa

A

= (x, 0)

W|Šƒ‹E[^VWZaSMƒW



r >

0

h

œAR)PSM>O„…:PoR)_

[

r∈R

+

K

(A, r),

\

r∈R

+

K

(A, r),

[

x∈R

K

(A, r),

\

x∈R

K

(A, r).

.>¥|.>3,7&=

œAR)P:MƒO„…:PoR_

‰7M>OQ‹bR)™E[CT’O„_C

A

× B

B

× A

`ba:]bYZW

O2

A

= {−1, 2, 3}

B

= h0, 2)

—+

A

= {x ∈ R: |x − 3| ≤ 2}

B

= {y : |y| ≥ 3}

…C

A

= {x ∈ R: sin x ≥ cos x}

B

= {y : y ∈ R}

background image

F:I

I

!

FCH:I@-J

B"

˜



A

=

T

n

=1

1

n

,

n

+1
n

B

=

S

n

=1

B

n

, B

n

= {x ∈ R: x

2

+ n − 2 = 0}

h

.>¥|.>3,7&›=

€

Šƒ‹gOŽT

˜

PSWZ_

‘Sa

A

× (B \ C) = (A × B) \ (A × C)

h


Wyszukiwarka

Podobne podstrony:
zestaw01 dzialania na zbiorach
Prawa działań na zbiorach
DZIALANIA NA ZBIORACH
03 Działania na zbiorach
377 dzialania na zbiorach
Dzialania na zbiorach
Nieskończone działania na zbiorach
DZIAŁANIA NA ZBIORACH
Prawa działań na zbiorach
Matematyka dla liceum Liczby i ich zbiory Działania na zbiorach Wikibooks, biblioteka wolnych podrę
dzialania na zbiorach
DZIAŁANIA NA ZBIORACH
377 dzialania na zbiorach
Zbiory i działania na zbiorach
Zestaw 11 Działania na wektorach i macierzach
Zestaw 11- Działania na wektorach i macierzach

więcej podobnych podstron