Fundamentals of Magnetism
Lecture 1
Magnetic domain image of iron from
Principia Rerum Naturalium (1734) given by
E.Swedenborg
Magnetized state of Fe
Demagnetized state of Fe
Definitions of magnetic fields
Induction:
(
)
M
H
B
r
r
r
+
=
0
μ
External magnetic field:
→
→
→
= H
M
χ
H
Magnetization
average magnetic moment of
magnetic material
Susceptibility
tensor representing anisotropic material
→
M
χ
(
)
→
→
=
+
=
H
H
B
μ
χ
μ
1
0
where:
(
)
χ
μ
μ
+
=
1
0
permability of the material
Maxwell’s equations
0
=
=
∇
B
div
B
r
r
o
r
j
H
rot
H
r
r
r
r
=
=
×
∇
∫
=
l
i
l
d
H
r
o
r
t
B
E
rot
E
∂
∂
−
=
=
×
∇
r
r
r
r
U
t
s
d
B
t
l
d
E
S
=
∂
∂
−
=
∂
∂
−
=
∫
∫
φ
r
o
r
r
o
r
r
i
H
π
2
=
[oe]
[oe]
l
iN
H
=
[A/m]
[A/m]
Demagnetization field
2
4
r
dV
dH
πρ
=
r
s
H
/
2
.
0
=
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+
+
−
=
∇
−
=
dz
dM
dy
dM
dx
dM
M
z
y
x
m
r
o
r
ρ
To compute the demagnetization field, the magnetization at all points must
be known.
M
N
H
d
r
r
−
=
when magnetic materials becomes magnetized by application of
external magnetic field, it reacts by generating an opposing field.
[emu/cm
4
]
The magnetic field caused by magnetic poles can be obtained
from:
The fields points radially out from the positive or
north poles of long line. The
s
is the pole strength
per unit length [emu/cm
2
]
[oe=
emu/cm
3
]
Demagnetization field
poles density, magnetic „charge” density
m
M
M
B
ρ
μ
μ
=
∇
−
=
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛ −
∇
→
→
→
o
r
r
o
0
0
Demagnetization tensor N
zz
zy
zx
yz
yy
yx
xz
xy
xx
π
4
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
2
π
π
3
/
4
0
0
0
3
/
4
0
0
0
3
/
4
π
π
π
D
S
total
H
H
H
−
=
For ellipsoids, the demagnetization tensor is the same at all the points within the
given body. The demagnetizing tensors for three cases are shown below:
The flat plate has no demagnetization within its x-y plane but shows a 4
π
demagnetizing factor on magnetization components out of plane. A sphere shows
a 4/3
π factor in all directions. A long cylinder has no demagnetization along its
axis, but shows 2
π in the x and y directions of its cross sections.
H
S
- the solenoid field
(4
π)
Electron spin
Orbital momentum
p
r
L
r
r
r
×
=
ω
m
r
rmv
L
2
=
=
2
r
T
e
S
i
L
π
μ
=
⋅
=
Magnetic moment of electron
T
π
ω
2
=
π
ω
π
μ
2
2
r
e
L
=
m
e
L
L
2
=
μ
)
1
(
2
+
=
l
l
h
L
π
)
1
(
4
+
=
l
l
m
eh
L
π
μ
L
r
rr
L
μ
pr
i
Electron Spin
emu
m
eh
B
20
10
93
.
0
4
−
×
=
=
π
μ
The magnetic moment of spining electron is called the
Bohr magneton
3d shells of Fe are unfilled and have uncompensated electron spin magnetic
moments
when Fe atoms condense to form a solid-state metallic crystal, the electronic
distribution
(density of states)
, changes
.
Whereas the isolated atom has
3d:
5+, 1-; 4s:1+, 1-,
in the solid state the distribution becomes
3d: 4.8+, 2.6-; 4s:
0.3+,0.3-.
Uncompensated spin magnetic moment of Fe is
2.2
μ
B
.
Electron spin
Exchange coupling
3
3
8
2
/
1700
)
10
86
.
2
(
2
.
2
)
0
(
cm
emu
T
M
B
S
=
×
=
=
−
μ
The saturation of magnetization
M
S
for body-centered cubic Fe crystal can
be calculated if lattice constant
a=2.86 Å
and two iron atoms per unit cell.
Magnetyczny (analogowy) zapis dźwięku
1877
-
T. Edison
– nagranie i odtworzenie dźwięku z woskowego
cylindra zapis niemagnetyczny.
1898
-
V. Poulsen
– telegrafon – zapis na drucie stalowym
(
Φ = 1mm) prędkość zapisu 2m/s.
1900
-Prezentacja telegrafonu na Światowej Wystawie w Paryżu.
Lata dwudzieste XX wieku
-
L. Blattner
– Blattnerphone - zapis
na taśmie stalowej (grubość 0.05mm, szer. 3mm)
prędkość zapisu 1m/s.
1927
-
F. Pflumer
– zapis na taśmie papierowej pokrytej klejem z
opiłkami żelaza.
Lata trzydzieste XX wieku
-
BASF
– pierwsze taśmy z tworzyw
sztucznych pokryte tlenkami żelaza.
Historia – pierwszy zapis dźwięku
1898 – Valdemar Poulsen
2 m/s
Elektro-
magnes
Mikrofon
bl
a
bl
a.
la
..
Fala dźwiękowa
Sygnał elektryczny
Zapis magnetyczny
Głowica zapisu
Nośnik informacji –
struna fortepianowa
(drut stalowy).
Elektro-
magnes
Głośnik
Bla bla...
2 m/s
Głowica odczytu
Odczyt informacji (głowica indukcyjna) :
Do odczytu informacji wykorzystywane jest zjawisko indukcji magnetycznej – generowanie
siły elektromotorycznej w obwodzie prądu pod wpływem zmian strumienia magnetycznego –
przecinania linii sił rozproszonego pola magnetycznego pochodzącego od różnie
zorientowanych magnetycznie obszarów
.
Jak zwiększyć gęstość zapisu informacji?
Zastąpić materiał lity (stalowy drut lub taśmę) drobinami materiału
ferromagnetycznego naniesionymi na niemagnetyczne podłoże (wpierw
papier później tworzywa sztuczne – taśmy magnetofonowe).
In the early 1930s researchers at the Ludwigshafen works created a sensation with
another pioneering invention: the Magnetophon, which had been developed in
cooperation with AEG. It was presented at the Berlin Radio Exhibition in 1935.
Pierwsze magnetofony firmy AEG prezentowane na światowej
wystawie sprzętu radiowego (Berlin 1935).
zapis
odczyt
350 nm
szer.
45 nm
długość
dysk
20 nm
Magnetyczny zapis w informatyce
Zapis binarny (0, 1)
→ kierunek namagnesowania
←
/
→
Warunek stabilności – pole koercji (pole potrzebne do
przemagnesowania) materiału ferromagnetycznego H
C
musi być
dostatecznie duże – im węższe bity tym większe musi być pole H
C
Im większe pole H
C
tym trudniej zapisać informację – wymagane są
bardzo małe odległości pomiędzy głowicą zapisu i dyskiem (obecnie
0.1
μm, większe wartości prądu płynące przez elektromagnes.....
Gęstość zapisu
przy podanych
rozmiarach bitów
wynosi około
30Gbit/inch
2
.
1nm = 10
-9
m
1nm = 10
-6
mm
1nm = 0.000001mm
1Å = 10
-7
mm
1
0
M
H
H
C
-H
C
Dążymy do uzyskania maksymalnej
gęstości zapisu !!!!!!!
Co oznacza gęsty zapis?
Bity – obszary o namagnesowaniu
←
/
→
powinny mieć jak
najmniejszą długość i szerokość.
Szerokość bitu
Długość bitu
Co ogranicza gęstość zapisu?
•Nośnik informacji – materiał magnetyczny
•Zapis informacji – głowica zapisu
•Odczyt informacji – głowica odczytu
History of HDD
• 1956 – HDD of IBM, random access method of
accounting and control (RAMAC)
• 1980 – induction thin film head
• 1990 – write induction coil, read AMR sensor
• 1996 – GMR sensor
HDD for 50 years and now
First Hard Disk Drive with 24" Diameter Disks Compared with Modern 2.5" HDD. The first HDD was
introduced in 1956 with
50 disks of 24" diameter holding a total of 4.4 Mbytes
of data. The purchase price of
this HDD was
$10,000,000 per Gbyte
. For comparison in the foreground a modern HDD is shown holding
160
Gbyte of data on two 2.5" diameter disks
at a purchase price of
less than $1 per Gbyte
.
Dimensions scaling
Areal data storage density vs. time for inductive and
MR read heads
Disc drive
The slider carrying the magnetic
write/read head. The slider is
mounted on the end of head
gimbal assembly (HGA)
The air-bearing surface (ABS)
allowing the head to fly at a distance
above the medium about 10 nm
The magnetic disks (up to 10) in
diameter 1 – 5.25 inches. 5.400 –
15.000 RPM it is related to about
100 km/h
Thin film disks
Substrate – Al Mg (or glass) + electroplated Ni
80
P
20
(T
c
<T
room
). NiP undercoat layer make disk hard and smooth.
Cr underlayer is used to control microstructure and magnetic
properties the main magnetic recording layer of CoPtCr
doped with B. The magnetic layer is covered by a carbon
overcoat layer and lubricant. The last two layers are
necessary for the tribological performance of the head-disk
interface and for the protection of the magnetic layer.
Disk layer structure
Evolution of bit size
Macroscopic properties of the disk
For high density recording the macroscopic properties such as
coercivity
(H
c
),
remanence
(M
r
)
, coercive squerness
(S
*
)
and
remanence squerness
(S)
determine read-back signal variables such
as pulse shape, amplitude and resolution arising from magnetic
transitions.
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=
f
x
M
x
M
r
arctan
2
)
(
π
The parameter
(f )
is called as
transition slope parameter.
In an ideal
situation, in the absence of demagnetizing fields (arising from
adjacent bit cells), the transition would be abrupt.
Assuming that the contributions to the transition parameter from
characteristics of the write head are negligible and that the recording
medium has a coercive squerness
S
*
= 1
a simplified relation can be
derived from the Williams Comstock model:
(
)
c
r
H
d
M
f
π
δ
δ
2
+
=
(4)
(5)
To minimize
the transition slope f
, Eq.5 indicates that this can be achieved by:
•decreasing the magnetic spacing
d
and thickness of recording medium
δ,
•increasing the
H
c
of the medium,
•smaller
M
r
reduce the read signal detected by AMR or GMR.
Tradycyjne media jeden bit z
łożony z 1000 ziaren
Grains in bit cell
Microscopic properties
Coercivity
H
c
-
control and modification:
• magnetocrystalline anisotropy (grain shape anisotropy),
•selection of alloying elements (Al, Cr, Pt, Ta, B,...)
•determination of influence:
•deposition conditions and parameters: substrate temperature, bias
voltage, sputtering power (deposition rate), sputtering gas pressure
(Ar)
•microstructure: film stresses, grain size, texture (grain orientation),
grain boundaries, crystal defects.
If the grain structure is noticably voided, leading to reduced magnetic intractions and
lower transition noise
.
Superparamagnetic effect
The superparamagnetic effect originates from the shrinking volume of magnetic grains that compose the storage properties of hard disk
media. The magnetic grains represent the data bits that are stored as alternating magnetic orientations. To increase data-storage densities
while maintaining acceptable performance, designers have shrunk the media's grain diameters and decreased the thickness of the media.
The resulting smaller grain volume makes them increasingly susceptible to thermal fluctuations, which decreases the signal sensed by the
drive's read/write head. If the signal reduction is great enough, data could be lost over time to this superparamagnetic effect.
TEM of the grain structures in magnetic media. (magnification = 1 million)
The pictures are transmission electron micrographs (TEM) of two different disk media which illustrates how the grain structure has
evolved over time.
The TEM on the left is a magnetic media that supports a data density of about 10 gigabits/inch2 with an average grain
diameter of about 13 nanometers
.
The magnetic media on the right supports a data density of 25 gigabit/inch2 with an average grain
diameter of about 8.5 nanometers.
Historically, disk drive designers have had only two ways to maintain thermal stability as the media's
grain volume decreases with increasing areal density: 1) Improve the signal processing and error-correction codes (ECC) so fewer grains
are needed per data bit, and 2) develop new magnetic materials that resist more strongly any change to their magnetization, known
technically as higher coercivity. The later is complicated by the laws of physics, as higher coercivity alloys are more difficult to write on.
While improvements in coding and ECC are ongoing, Hitachi GST's discovery of AFC media is a major advancement because it allows
disk-drive designers to write at very high areal densities on a surface that offers greater stability than conventional media.
Nośnik informacji – ferromagnetyczna cienka warstwa (z
anizotropią w płaszczyźnie warstwy) o granularnej (ziarnistej)
strukturze. Takie dyski są obecnie powszechnie stosowane.
1 bit (obszar, w którym ziarna mają
określony kierunek magnetyzacji)
składa się z około 10
3
ziaren.
Rozmycie granicy pomiędzy bitami
nie może być duże. Tak więc wzrost
gęstości zapisu można uzyskać
poprzez zmniejszenie rozmiaru
ziaren.
Czy można bezkarnie zmniejszać rozmiar cząstek?
Dla małych cząstek (d<3nm w temperaturze pokojowej) kierunek
namagnesowania cząstki ferromagnetycznej w wyniku wzbudzeń
termicznych fluktuuje (zmienia kierunek) – cząstka
superparamagnetyczna. Oznacza to utratę zapisanej informacji
(limit superparamagnetyczny).
Signal to noise (S/N) ratio
Highly intergranular coupled magnetic thin films with long correlation lengths
tends to form zizag domain walls in recorded transitions (bits) which results in
noises. Threrefore the reduction of intergranular exchange coupling becomes
important.
There are three major approaches to noise reduction:
•physical grain segregation,
•compositional segregation,
•Small grains with very narrow size distributions.
For example – higher Cr content and higher sputter temperatures leads to Cr
segregation to grain boundaries, forming non-magnetic phases in CoPtCrTa and
CoPtCrTB. The low solubility of B in the cobalt alloys leads to compositional
segregation.
The ideal thin-recording-magnetic layer should be composed of grains with
high-anisotropy, which are smaller than the recording bit cell, uniform in size
and magnetically isolated.
Thermal stability
For high density recording the grains are small in comaprison to the bit cell. In a simplified model,
assuming isolated grains, the thermally induced switching of magnetization has to overcome an
energy barier. The switching probability
f
is given by an Arrhenius equation:
⎟
⎞
⎜
⎛
Δ
−
=
W
f
f
exp
0
⎠
⎝
kT
ΔW
is energy barier,
K
u
is the uniaxial anisotropy constant, V is grain volume. If the grains
become very small, the magnetization switch very easily which leads to
superparamagnetic
efect.
Estimation of minimum grain size (example):
K
u
=2
×10
5
J/m
3
.
Bit stored 10 years at room temperature
(f<3.33
×10
-9
Hz at T=300 K),
than diameter of spherical grain is
9 nm.
where
ΔW = K
u
V (6)
Granular media vs. patterned media
Self organized particle media
Chemical method for preparation FePt
nanoparticles
TEM micrograph of self-assembled
FePt nanoparticles (size 3 to 10nm)
Write/read head of HDD
Inductive write head
The yoke consists of structured Ni
81
Fe
19
(permalloy) films P
1
and P
2
.These films are all
deposited on the top of substrate which
consists of insulators (Al
2
O
3
and TiC). The gap
width is defined by the thickness of Al
2
O
3
insulation layer between P
1
and P
2
hich is
below 100 nm
.
Micrograph of the write/read head
taken by SEM from the ABS side.
Aim for application
Magnetic properties optimization of
ML (Fe
97
Al
3
)
85
N
15
/Al
2
O
3
for shields and poles of HDD heads
SEM cross section of the head
Schematic representation of a longitudinal recording
process
Magnetic force micrograph (MFM)of
recorded bit patterns. Track width is
350 nm recorded in
antiferromagnetic coupled layers
(AFC media)