ANALIZA POPYTU W ŁAŃCUCHU
DOSTAW
Analiza popytu w łańcuchu
dostaw
2
Analiza popytu w łańcuchu dostaw
stanowi jeden z
kluczowych czynników podejmowania decyzji
dotyczących zarówno
bieżących dostaw
, jak i
decyzji
długookresowych
, dotyczących
rozwoju zasobów
łańcucha
i
budowania nowych łańcuchów
z innymi
przedsiębiorstwami
Etap I (
klient
) – analiza
popytu na produkty
;
Etap II (
sprzedawca
) – analiza
zapotrzebowania
na zapas i dostawy
;
Jest ona ważnym
etapem oceny dynamicznie
zmieniających się przepływów
(
wielkości
,
asortymentu
) zarówno
materiałów
, jak i
wyrobów
gotowych
Analiza popytu na
produkty finalne
wywołuje
potrzebę wielu kolejnych analiz w całym łańcuchu
dostaw. W zależności od ogniwa łańcucha mogą one
dotyczyć:
Etap III (
przewoźnik
) – analiza
zapotrzebowania na
samochody i kierowców
;
Analiza popytu w łańcuchu
dostaw
3
Przykła
d
Dla przedstawionych w tabeli danych, proszę
obliczyć:
Etap IV (
centrum dystrybucji
) – analiza
zapotrzebowania na
przestrzeń składową
i
sprawność obsługi dostaw
(
przyjęć
,
kompletacji
,
wydań
);
Etap V (
producent
) – analiza zapotrzebowania na
potencjał produkcyjny
i
materiały
;
Etap VI (
dostawca
) – analiza
zapotrzebowania na
materiały
i
potencjał produkcyjny
wartość średnią wielkości partii produkcyjnej i
czasu pracy;
równanie linii trendu dla zależności: wielkości partii
produkcyjnej w czasie oraz czasu pracy od wielkości
partii produkcyjnej;
Analiza popytu w łańcuchu
dostaw
4
Dzień
1
2
3
4
5
6
7
8
9
10 11 12
Wielkość
partii
produkcyjne
j [szt.]
30
0
28
0
34
5
32
8
37
0
43
0
48
0
44
8
41
2
43
1
44
8
45
6
Czas pracy
[rbh]
32 26 37 29 40 41 45 43 40 43 47 46
odchylenie standardowe obrazujące niestabilność
wielkości partii produkcyjnej w czasie i czas pracy
przypadający na wielkość partii produkcyjnej;
minimalny i maksymalny wskaźnik sezonowości dla
obu obliczanych zależności (uwaga: jeżeli występuje
trend, najpierw należy wyeliminować wpływ trendu)
Wartość średnia
– jest arytmetyczną wartością
średnią z ustalonej liczby n danych, objętych
analizą i uśrednieniem. Oblicza się ją z zależności:
Analiza popytu w łańcuchu
dostaw
5
n
y
y
n
1
i
t
(n)
gdzie
:
(n)
y
-
średnia arytmetyczna
obliczona
dla n danych;
t
y
-
wartość danej
w
okresie t;
n –
liczba
danych
Wartość średnia
wielkości partii
produkcyjnej:
394
12
456
448
431
412
448
480
430
370
328
345
280
300
y
(12)
l
Wartość średnia
czasu pracy:
39rbh
12
46
47
43
40
43
45
41
40
29
37
26
32
y
(12)
t
Analiza popytu w łańcuchu
dostaw
6
Trend
(tendencja rozwojowa wartości średniej) –
wyraża trwałe zmiany wartości średniej
analizowanej danej zależnej w stosunku do innej
danej niezależnej
Trend może mieć
charakter:
Zależność dwóch zmiennych może być bez
trendu
liniowy
(przybliżony linią prostą, opisany
równaniem prostej typu Y=at+b);
nieliniowy
Trend może być
:
rosnący
;
malejący
Analiza popytu w łańcuchu
dostaw
7
Równanie linii trendu (Y=at+b) dla:
wielkości partii produkcyjnej w czasie
;
Średnia wielkość partii produkcyjnej w ciągu
pierwszych dwóch dni wynosi:
290
2
280
300
y
2)
-
(1
l
Średnia wielkość partii produkcyjnej w ciągu
ostatnich dwóch dni wynosi:
452
2
456
448
y
12)
-
(11
l
Liczba dni pomiędzy obliczonymi okresami
wynosi
10
, zatem średni wzrost wielkości
produkcji w ciągu jednego dnia to:
16,2
10
290
452
a
Analiza popytu w łańcuchu
dostaw
8
Wartość początkowa
b
jest położona o pół okresu
wcześniej niż średnia z 1 i 2 dnia, czyli:
Zatem
równanie linii trendu zmian wielkości
partii produkcyjnej w czasie
ma postać:
281,9
2
16,2
290
b
281,9
T
16,2
Y
l
czasu pracy od wielkości partii produkcyjnej
;
Średni czas pracy w ciągu pierwszych dwóch dni
wynosi:
29
2
26
32
y
2)
-
(1
t
Analiza popytu w łańcuchu
dostaw
9
Średni czas pracy w ciągu ostatnich dwóch dni
wynosi:
46,5
2
46
47
y
12)
-
(11
t
Liczba dni pomiędzy obliczonymi okresami
wynosi
10
, zatem średni wzrost czasu pracy w
ciągu jednego dnia to:
1,75
10
29
46,5
a
Wartość początkowa
b
jest położona o pół okresu
wcześniej niż średnia z 1 i 2 dnia, czyli:
Zatem
równanie linii trendu zmian czasu pracy
od wielkości partii produkcyjnej
ma postać:
28,125
2
1,75
29
b
28,125
T
1,75
Y
t
Analiza popytu w łańcuchu
dostaw
10
Do opisu wahań losowych krótkookresowych
(przypadkowych) w popycie używane jest
odchylenie
standardowe
, obliczane z zależności:
n
Ysr
Y
σ
n
i
2
i
i
gdzie
:
Y
i
– wielkość
popytu;
Ysr
i
– średnia wielkość popytu;
n – liczba danych
Zatem, dla
wielkości partii produkcyjnej
:
natomiast dla
czasu pracy
:
64
σ
l
6,5h
σ
t
Analiza popytu w łańcuchu
dostaw
11
dla
wielkości partii produkcyjnej
:
Wahania okresowe (sezonowe)
,
to wartość popytu
powtarzająca się w określonych odstępach czasu. Do
pomiaru sezonowości danych służy wskaźnik
sezonowości W
s
, obliczany jako:
Znaczenie
tej niestabilności należy sprawdzić
porównując
wartość
odchylenia standardowego ze
średnią
wartością
popytu
:
16,2%
100%
394
64
100%
Ysr
σ
U
l
l
l
dla
czasu pracy
:
16,7%
100%
39h
6,5h
100%
Ysr
σ
U
t
t
t
Ysr
Y
W
s
s
Analiza popytu w łańcuchu
dostaw
12
gdzie:
Y
s
– wartość sezonowa
Uwaga!
W przypadku kiedy szereg czasowy danych
wykazuje
trend
,
wartość średnia
powinna być
obliczona na podstawie równania linii trendu
Dla
wielkości partii produkcyjnej
obliczamy
wartości sezonowe na podstawie równania trendu
Dzień
1
2
3
4
5
6
7
8
9
10 11 12
Wartość
sezonowa
29
8
31
4
33
1
34
7
36
3
37
9
39
5
41
2
42
8
44
4
46
0
47
6
Zatem
wartość
średnia
:
Ysr
l
=
387
Analiza popytu w łańcuchu
dostaw
13
Współczynniki
sezonowości
:
Dzie
ń
1
2
3
4
5
6
7
8
9
10 11 12
W
s
0,7
7
0,
81
0,
85
0,9
0
0,9
4
0,9
8
1,0
2
1,0
6
1,
11
1,
15
1,
19
1,2
3
Dla
czasu pracy
obliczamy wartości sezonowe na
podstawie równania trendu
Dzień
1 2 3 4 5 6 7 8 9 1
0
1
1
1
2
Wartość
sezonowa
3
0
3
2
3
3
3
5
3
7
3
9
4
0
4
2
4
4
4
6
4
7
4
9
Zatem
wartość
średnia
:
Ysr
t
=
40
Analiza popytu w łańcuchu
dostaw
14
DZIĘKUJĘ ZA UWAGĘ
Współczynniki
sezonowości
:
Dzie
ń
1
2
3
4
5
6
7
8
9
10 11 12
W
s
0,7
5
0,
79
0,
83
0,8
8
0,9
2
0,9
7
1,0
1
1,0
5
1,
10
1,
14
1,
18
1,2
3