|
A |
B |
C |
|
|
|
|
|
|
|
|
|
|
Y |
X |
Y |
X |
Y |
X |
|
|
|
|
|
|
|
|
|
1 |
16,0 |
3,0 |
11,0 |
2,0 |
4,3 |
3,0 |
|
|
|
|
|
|
|
|
|
2 |
16,0 |
5,0 |
12,0 |
3,0 |
5,3 |
3,5 |
|
|
|
|
A |
|
|
|
|
3 |
17,0 |
6,0 |
13,0 |
3,0 |
5,8 |
4,0 |
|
4 |
17,0 |
5,0 |
13,0 |
4,0 |
7,3 |
4,5 |
5 |
18,0 |
9,0 |
14,0 |
4,0 |
7,8 |
5,5 |
6 |
17,0 |
8,0 |
14,0 |
5,0 |
8,3 |
6,0 |
7 |
18,0 |
9,0 |
14,0 |
5,0 |
9,8 |
6,5 |
8 |
18,0 |
11,0 |
15,0 |
6,0 |
9,3 |
7,0 |
9 |
19,0 |
9,0 |
16,0 |
6,0 |
10,3 |
7,0 |
10 |
19,0 |
11,0 |
15,5 |
7,0 |
10,3 |
7,5 |
11 |
20,0 |
11,0 |
16,0 |
7,0 |
10,8 |
7,5 |
12 |
19,0 |
12,0 |
16,0 |
8,0 |
11,3 |
7,5 |
13 |
19,0 |
13,0 |
17,0 |
7,0 |
11,8 |
8,0 |
14 |
21,0 |
12,0 |
17,5 |
9,0 |
12,5 |
8,5 |
15 |
20,0 |
13,0 |
18,0 |
10,0 |
12,3 |
9,0 |
16 |
21,0 |
14,0 |
19,0 |
10,0 |
13,3 |
9,0 |
17 |
22,0 |
14,0 |
19,0 |
10,0 |
14,8 |
9,5 |
18 |
21,0 |
15,0 |
20,0 |
11,0 |
14,3 |
10,0 |
19 |
22,0 |
16,0 |
20,0 |
12,0 |
15,3 |
10,5 |
20 |
22,0 |
18,0 |
22,0 |
13,0 |
15,8 |
11,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Przedsiębiorstwa A, B, C produkuja identyczny wyrób, którego cena wynosi 2,5 zł. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dane przedstawiajace wielkość miesięcznych kosztów w tys. zł (Y) i rozmiary miesięcznej produkcji w tys. szt. (X) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
w trzech przedsiębiorstwach w ciągu 20 miesięcy zawarte są w tabeli. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a) Sporządzić korelacyjne wykresy rozrzutu punktów dla każdego przedsiębiorstwa i wybrać odpowiedni model kosztów w każdym przypadku. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b) Dokonać estymacji modeli kosztów, ocenić ich jakość oraz zinterpretować parametry strukturalne. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c) Obliczyć wielkość zysku jako różnicy między utargiem a kosztami dla każdego przedsiębiorstwa, przyjmując za okres bazowy miesiąc 20. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A) |
Y^ = 14,17 + 0,46*X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,5 |
0,044 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alfa0= |
14,17 |
tys. zł |
|
|
|
|
|
|
|
|
|
|
|
|
|
wielkosc przecietnych miesiecznych kosztow stalych w przedsiebiorstwie A |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alfa1 = |
0,46 |
tys. zł |
|
|
|
|
|
|
|
|
|
|
|
|
|
jeśli produkcja miesieczna przedsiebiorstwa A wzrosnie (zmaleje) o 1 tys szt to miesieczne koszty mogą przecietne wzrosnac (zmalec) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o ok. 0,46 tys zł (460zl) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R2 = |
0,86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model wyjasnia zmiennosc kosztow przedsiebiorstwa A w ok. 86% czyli jest dobrze dopasowany do danych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Se = 0,76 (tys zł) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B |
|
|
|
|
|
Se/Yśr *100 = |
|
3,97905759162304 |
< 5% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dosc maly blad |
|
|
|
|
|
|
|
|
|
|
|
|
|
bledy ocen parametru dopuszczalne |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B) |
Y^ = 9,66 + 0,91*X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,32 |
0,04 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alfa0= |
9,66 |
tys. zł |
|
|
|
|
|
|
|
|
|
|
|
|
|
wielkosc przecietnych miesiecznych kosztow stalych w przedsiebiorstwie A |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alfa1 = |
0,91 |
tys. zł |
|
|
|
|
|
|
|
|
|
|
|
|
|
jeśli produkcja miesieczna przedsiebiorstwa A wzrosnie (zmaleje) o 1 tys szt to miesieczne koszty mogą przecietne wzrosnac (zmalec) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o ok. 0,91 tys zł (910zl) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R2 = |
0,965 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model wyjasnia zmiennosc kosztow przedsiebiorstwa A w ok. 96,5% czyli jest dobrze dopasowany do danych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Se = 0,57 |
tys zł |
|
|
|
|
|
|
|
Se/Yśr *100 = |
|
3,54037267080745 |
< 5% |
|
|
|
|
|
|
dosc maly blad |
|
|
|
|
|
bledy ocen parametru dopuszczalne |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
C) |
Y^ = 0,11 + 1,44*X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,36 |
0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
alfa0= |
0,11 |
tys. zł |
|
|
|
|
|
wielkosc przecietnych miesiecznych kosztow stalych w przedsiebiorstwie A |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alfa1 = |
1,44 |
tys. zł |
|
|
|
|
|
|
|
|
|
|
|
|
|
jeśli produkcja miesieczna przedsiebiorstwa A wzrosnie (zmaleje) o 1 tys szt to miesieczne koszty mogą przecietne wzrosnac (zmalec) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o ok. 1,44 tys zł (1440zl) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R2 = |
0,98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model wyjasnia zmiennosc kosztow przedsiebiorstwa A w ok. 98% czyli jest dobrze dopasowany do danych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Se = 0,47 |
tys zł |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Se/Yśr *100 = |
|
2,9746835443038 |
< 5% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dosc maly blad |
|
|
|
|
|
|
|
|
|
|
|
|
|
bledy ocen parametru dopuszczalne |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AD c) miesiac 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A) X = |
18 |
tys szt |
18000 |
|
|
|
|
|
|
|
|
|
|
|
|
Y = |
22 |
tys zł |
|
|
|
|
|
|
|
|
|
|
|
|
|
zysk = utarg - koszty |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utarg = |
45000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
koszty = |
22,45 |
tys zł |
22450 |
|
|
|
|
|
|
|
|
|
|
|
|
zysk = |
22550 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AD c) miesiac 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B) X = |
13 |
tys szt |
13000 |
|
|
|
|
|
|
|
|
|
|
|
|
Y = |
22 |
tys zł |
|
|
|
|
|
|
|
|
|
|
|
|
|
zysk = utarg - koszty |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utarg = |
32500 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
koszty = |
21,49 |
tys zł |
21490 |
|
|
|
|
|
|
|
|
|
|
|
|
zysk = |
11010 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AD c) miesiac 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
C) X = |
11 |
tys szt |
11000 |
|
|
|
|
|
|
|
|
|
|
|
|
Y = |
15,8 |
tys zł |
|
|
|
|
|
|
|
|
|
|
|
|
|
zysk = utarg - koszty |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utarg = |
27500 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
koszty = |
15,95 |
tys zł |
15950 |
|
|
|
|
|
|
|
|
|
|
|
|
zysk = |
11550 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l.p. |
Y |
X |
|
|
|
1 |
5,0 |
1 |
|
|
|
2 |
6,0 |
1 |
|
|
|
3 |
6,0 |
2 |
|
|
|
4 |
7,0 |
2 |
|
|
|
5 |
7,0 |
3 |
|
|
|
6 |
7,0 |
4 |
|
|
|
7 |
8,0 |
4 |
|
|
|
8 |
7,0 |
5 |
|
|
|
9 |
8,0 |
5 |
|
|
|
10 |
8,0 |
6 |
|
|
|
11 |
8,0 |
7 |
|
|
|
12 |
9,0 |
7 |
|
|
|
13 |
8,0 |
8 |
|
|
|
14 |
9,0 |
8 |
|
|
|
15 |
10,0 |
8 |
|
|
|
|
|
|
|
|
|
|
|
16 |
9,0 |
9 |
|
|
|
|
|
|
|
|
|
|
|
17 |
10,0 |
9 |
|
|
|
|
|
|
|
|
|
|
|
18 |
11,0 |
9 |
|
|
|
|
|
|
|
|
|
|
|
19 |
11,0 |
10 |
|
|
|
|
|
|
|
|
|
|
|
20 |
12,0 |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a) Na podstawie danych dotyczących miesięcznych kosztów w tys. zł (Y) i miesięcznej produkcji w tys. szt (X) sporzadzić wykres zależności |
|
|
|
|
|
|
|
|
|
|
|
|
|
kosztów od wielkości produkcji. Dopasować odpowiedni model analityczny i dokonać estymacji parametrów tego modelu (wsk.: model wielomianowy) |
|
|
|
|
|
|
|
|
|
|
|
|
|
b) Zakładając, że produkcja wyniesie 5500 szt. Wyrobów na miesiąc, obliczyć wielkość poniesionych kosztów. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regresja dla modelu pomocniczego |
|
|
|
|
Y |
X |
Z = X^2 |
W = X^3 |
|
|
|
|
|
|
|
|
|
|
5,0 |
1 |
1 |
1 |
|
|
|
|
|
Y = alfa0 + alfa1 * X + alfa2 * X^2 + alfa3 * X^3 |
|
|
|
|
6,0 |
1 |
1 |
1 |
|
|
|
|
|
|
|
|
Z |
W |
6,0 |
2 |
4 |
8 |
|
|
|
|
|
|
|
|
|
|
7,0 |
2 |
4 |
8 |
|
|
|
|
|
|
|
|
|
|
7,0 |
3 |
9 |
27 |
|
|
|
|
|
Przecięcie |
4,16936722278401 |
|
|
|
7,0 |
4 |
16 |
64 |
|
|
|
|
|
X |
1,6191447870866 |
|
|
|
8,0 |
4 |
16 |
64 |
|
|
|
|
|
Z = X^2 |
-0,277909123552051 |
|
|
|
7,0 |
5 |
25 |
125 |
|
|
|
|
|
W = X^3 |
0,018918063019067 |
|
|
|
8,0 |
5 |
25 |
125 |
|
|
|
|
|
|
|
|
|
|
8,0 |
6 |
36 |
216 |
|
|
|
|
|
|
|
|
|
|
8,0 |
7 |
49 |
343 |
|
|
|
|
|
|
|
|
|
|
9,0 |
7 |
49 |
343 |
|
|
|
|
|
|
|
|
|
|
8,0 |
8 |
64 |
512 |
|
|
|
|
|
|
|
|
|
|
9,0 |
8 |
64 |
512 |
|
|
|
|
|
Y^ = 0,019 * X^3 - 0,278 * X^2 + 1,619* X + 4,169 |
|
|
|
|
10,0 |
8 |
64 |
512 |
|
|
|
|
|
0,008 |
0,14 |
|
0,69 |
0,92 |
9,0 |
9 |
81 |
729 |
|
|
|
|
|
|
|
|
|
|
10,0 |
9 |
81 |
729 |
|
|
|
|
|
|
|
|
|
|
11,0 |
9 |
81 |
729 |
|
|
|
|
|
|
|
|
|
|
11,0 |
10 |
100 |
1000 |
|
|
|
|
|
|
|
|
|
|
12,0 |
10 |
100 |
1000 |
|
|
|
|
|
R2 = 0,89 |
|
|
|
|
8,3 |
|
|
|
|
|
|
|
|
model wyjasnia zmiennosc kosztow w ok.. 89% czyli jest dobrze dopasowany do danych emirycznych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Se = 0,67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
wartosci empiryczne kosztow przeciętnie roznia się od wartosci teoretycznych o ok. 0,67 tys zł |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Se / Yśr * 100% = |
|
8,07228915662651 |
%< 10% |
błąd dopuszczalny |
|
|
|
|
|
|
|
|
|
MODEL DOBRY |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ad . B) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5500szt = 5,5 tys. szt. = X |
|
|
|
|
|
|
|
|
|
|
|
|
Y^ = |
7,825125 |
tys zl |
|
|
|
|
|
|
|
|
|
|
|
|
wielkosc kosztow dla produkcji na poziomie 5,5 tys szt |
|
|
|
|
|
|
|
|
|
|
|
|
l.p. |
V |
X |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
75 |
1016 |
|
|
|
|
|
|
|
|
|
|
|
|
2 |
86 |
777 |
|
|
|
|
|
|
|
|
|
|
|
|
3 |
80 |
738 |
|
|
|
|
|
|
|
|
|
|
|
|
4 |
71 |
813 |
|
|
|
|
|
|
|
|
|
|
|
|
5 |
87 |
567 |
|
|
|
|
|
|
|
|
|
|
|
|
6 |
80 |
616 |
|
|
|
|
|
|
|
|
|
|
|
|
7 |
78 |
833 |
|
|
|
|
|
|
|
|
|
|
|
|
8 |
81 |
741 |
|
|
|
|
|
|
|
|
|
|
|
|
9 |
70 |
1006 |
|
|
|
|
|
|
|
|
|
|
|
|
10 |
75 |
918 |
|
|
|
|
|
|
|
|
|
|
|
|
11 |
71 |
886 |
|
|
|
|
|
|
|
|
|
|
|
|
12 |
72 |
907 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
W pewnej elektrowni przeprowadzono obserwację jednostkowych kosztów produkcji energii elektrycznej w zł na MWh (V) i miesięcznych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wielkości produkcji tej energii w MWh (X). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a) Na podstawie wykresu korelacyjnego dokonać doboru postaci analitycznej modelu kosztów jednostkowych w zależności od wielkości produkcji. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b) Obliczyć, jaki będzie koszt jednostkowy, jeśli produkcja wyniesie 1100 MWh miesięcznie. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c) Wyznaczyć i zinterpretować elastyczność funkcji kosztów jednostkowych przy produkcji na poziomie 1100 MWh. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V |
Z = 1/X |
|
|
75 |
0,000984251968504 |
|
|
86 |
0,001287001287001 |
|
|
80 |
0,001355013550136 |
|
|
71 |
0,001230012300123 |
|
|
87 |
0,001763668430335 |
|
|
80 |
0,001623376623377 |
|
|
78 |
0,001200480192077 |
|
|
81 |
0,001349527665317 |
|
|
70 |
0,000994035785288 |
|
|
75 |
0,001089324618736 |
|
|
71 |
0,001128668171558 |
|
|
72 |
0,001102535832415 |
|
|
77,1666666666667 |
|
|
|
|
|
|
V^ = alfa1 + alfa0* 1/X |
|
|
|
|
Z |
|
|
|
|
Przecięcie |
54,1033219464223 |
|
|
Z = 1/X |
18318,9061441678 |
V = alfa1 + alfa0 * Z |
|
|
|
|
|
|
|
V = 54,10 + 18318,91 * 1/X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6,46 |
5050 |
|
|
|
|
|
|
|
|
|
|
|
|
|
bledy ocen parametrow strukturalnych sa dopuszczalne |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Se = |
3,99 |
zł / MWh |
wartosci empiryczne kosztow jednostkowych roznia się przeciętnie od wartosci teoretycznych o ok. 4zl / MWh |
|
|
|
|
|
|
|
|
|
|
|
R2 = |
0,57 |
model wyjasnia zmiennosc kosztow jednostkowych w około 57% czyli jest przeciętnie dopasowany do danych empirycznych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Se / Yśr * 100% = |
|
5,17062634989201 |
% < 10% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ad . B) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V = |
70,7535545454545 |
zl / MWh |
|
|
|
|
|
|
|
|
|
|
|
|
|
koszt jednostkowy przy produkcji na poziomie 1100 MWh miesiecznie |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ad. C) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elastycznosc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ev = - alfa0^ / alfa0^ + alfa1^ * X = |
|
|
-0,235374104558319 |
% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Jeśli produkcja energii elektrycznej (X) wzrosnie (zmaleje) o 1% to koszt jednostkowy powinien przeciętnie zmalec (wrosnac) o ok. 0,24%. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|