|
Ćwiczenie projektowe nr 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zaprojektować słup drewniany ściskany osiowo , o przekroju złożonym, przy nastepujacych założeniach |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.1 Dane: |
|
|
|
|
wstaw dane: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
obliczeniowa siła ściskająca |
|
|
|
N = |
105 |
kN |
|
|
|
|
|
|
|
|
|
długość teoretyczna słupa |
|
|
|
l = |
5,4 |
m |
|
|
|
|
|
|
|
|
|
współczynnik długości wyboczeniowej: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
my = |
1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mz = |
1,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
klasa użytkowania |
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
klasa trwania obciążenia: |
|
|
|
k mod = |
0,7 |
wstaw odpowiednią wartość z tabeli |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stałe |
100 |
1 |
|
100 |
% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
klasa drewna |
|
|
C 35 |
wstaw odpowiednie wartość z normy |
|
|
|
|
|
|
|
|
|
|
|
cechy mechaniczne drewna: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wytrz. na zginanie |
|
|
f m,k = |
35 |
Mpa |
|
|
|
|
|
|
|
|
|
|
wytrz. na ściskanie |
|
|
f e,o,u = |
25 |
Mpa |
|
|
|
|
|
|
|
|
|
|
średni moduł spręzystości |
|
|
E0,mean = |
13 |
Mpa |
|
|
|
|
|
|
|
|
|
|
gęstość charak. Drewna |
|
|
ρ= |
400 |
kg/m3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
połączenie na gwoździe |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wartości obliczeniowe |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f m,d = |
f m,k * |
k mod |
= |
35 |
0,7 |
= |
18,85 |
Mpa |
= |
1,885 |
kN/cm2 |
|
|
|
|
g M |
1,3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
g M = |
1,3 |
wsp.materiałowy dla materiałów drewnopochodnych |
|
|
|
|
|
|
|
|
|
|
|
|
|
k mod = |
0,7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f c,o,d = |
f c,o,k * |
k mod |
= |
25 |
0,7 |
= |
13,46 |
Mpa |
= |
1,346 |
kN/cm2 |
|
|
|
|
g M |
1,3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.2 Dobór przekroju |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wstępne ustalenie napreżeń w elemencie ściskanym osiowo |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
δc,o,d = |
N |
< |
f c,o,d |
|
|
|
|
|
|
|
|
|
|
|
k c * |
Ac |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k c = |
0,4 - 0,5 |
wsp. wyboczeniowy |
|
|
|
|
|
|
|
|
|
|
|
|
|
k c = |
0,4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ac - |
przekrój obliczeniowy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ac > |
N |
= |
105 |
= |
195,00 |
cm2 |
|
|
|
|
|
|
|
k c * |
f c,o,d |
0,40 |
1,35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Przyjeto przekrój : |
|
z |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7,5 |
10 |
7,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ac = |
475 |
cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. Przyjęcie wielkość i rozstaw gwoździ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- średnica gwoździa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t min = |
5 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d = |
0,45 |
0,83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
przyjeto |
d = |
5 |
mm |
tabela PN Z-7.4.1-2 |
|
|
|
|
|
|
|
|
|
|
|
d = |
6x125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 * d |
|
= |
35 |
mm |
|
|
|
|
|
|
|
|
|
|
t max = |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 d - 30 |
*ρ |
= |
35 |
mm |
|
|
|
|
|
|
|
|
|
|
|
400 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- rozstaw gwoździ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Minimalne rozstawy i odległości gwoździ odczytano z tablicy PN 7.4.1.1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- odległość miedzy gwoździami |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
< |
> |
|
|
|
|
|
|
|
|
|
|
dla |
d |
> |
5,0 |
mm |
|
|
|
|
|
|
|
|
|
|
> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7,00 |
a1 = |
5 |
7 |
cos a |
5 |
= |
60,0 |
mm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
przyjeto |
a1 = |
80 |
mm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- rozstaw miedzy gwoździami |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a2 = |
5*d |
= |
25 |
mm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- odległość od końca nie obciążonego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a3 = |
10 |
5,0 |
|
|
= |
50,0 |
mm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- odległość od krawędzi nieobciążonej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a4 = |
5 |
5 |
= |
25 |
mm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. Wyboczenie słipa w płaszczyznie prostopadłej do szwów: ( oś y ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.1 Współczynnik redukcyjny gi |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Jy = |
suma Jyi + |
gy * |
suma Ai * |
eyi2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gy = |
1 |
= |
|
|
1 |
|
|
= |
0,983 |
|
|
1 + |
ρ2 |
* E 0,05 |
* A iy |
* S1 |
1 |
3,14 |
800 |
125,00 |
4 |
|
|
k l 2 |
|
773,1 |
540 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S1 = |
a1 |
= |
80 |
= |
40 |
mm |
|
|
|
|
|
|
|
|
|
2 |
2 |
|
|
|
|
|
|
|
|
|
S1 = |
4 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E 0,05 = |
8 Gpa |
= |
8000 |
Mpa = |
800 |
kN/cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A iy = |
25 |
5 |
= |
125 |
cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k = |
2/3 kser |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k - |
moduł podatności złacza |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kser - |
moduł podatności gwoździa na 1 cięcie wg 7.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kser = |
ρu1.5 * |
d 0.8 |
= |
400 |
5 |
= |
1159,6 |
N/mm |
|
|
|
|
|
|
|
25 |
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k = |
2 |
1159,6 |
= |
773,1 |
N/mm |
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.2 Efektywny moment bezwładności |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Jefy = |
suma Jyi + |
gy * |
suma Ai * |
eyi2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Jefy = |
2 |
7,5 |
15 |
2 |
25 |
5 |
2 |
0,98 |
125 |
10 |
= |
29309 |
cm4 |
|
|
12 |
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.3 Smukłość efektywna |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lef,y = |
my * |
l |
|
|
|
|
|
|
|
|
|
29739,5833333333 |
|
|
|
ief,y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
my = |
1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l = |
540 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ief,y = |
Jefy |
= |
29309 |
= |
7,86 |
cm |
|
|
|
|
|
|
|
|
|
Ac |
475 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lef,y = |
1,5 |
540 |
= |
103,12 |
|
|
|
|
|
|
|
|
|
|
|
7,86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.4 Współczynnik wyboczeniowy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
naprężenie krytyczne |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sc,cvity = |
p2 |
* E 0,05 |
= |
3,14 |
8000 |
= |
7,42 |
Mpa |
|
|
|
|
|
|
|
lef,y2 |
103,12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
smukłość sprawdzona |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lred,y = |
f e,o,u |
= |
25 |
= |
1,84 |
|
|
|
|
|
|
|
|
|
|
sc,cvity |
7,42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik ky |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ky = |
0,5[1+bc(lred.y - 0,5) + lerd.y2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bc - wsp dotyczacy prostoliniowości elementów |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bc = |
0,2 |
dla drewna litego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ky = |
2,32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik wyboczeniowy kc.y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kc.y = |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
ky + |
ky2 - |
lred2,y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kc.y = |
|
1 |
|
= |
0,27 |
|
|
|
|
|
|
|
|
|
|
2,32 |
2,32 |
1,84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.5 Sprawdzenie napręzeń w przekroju |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sc,o,d = |
N |
< |
fc,o,d = |
1,346 |
|
|
|
|
|
|
|
|
|
kc.y * |
Ac * |
f c,o,d |
Mpa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sc,o,d = |
105 |
= |
0,83 |
< |
1,35 |
Mpa |
|
|
|
|
|
|
|
0,27 |
475,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4. Wyboczenie słipa w płaszczyznie równoległej do szwów: ( oś z ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.1 Współczynnik redukcyjny gi |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Jz = |
suma Jzi + |
gz * |
suma Ai * |
ezi2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gz = |
1 |
= |
|
|
1 |
|
|
= |
1,02 |
|
|
1 + |
p2 |
* E 0,05 |
* A iż |
* S1 |
1 |
3,14 |
800 |
112,5 |
4 |
|
|
k l 2 |
|
773,1 |
540 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S1 = |
a1 |
= |
80 |
= |
40 |
mm |
|
|
|
|
|
|
|
|
|
2 |
2 |
|
|
|
|
|
|
|
|
|
S1 = |
4 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E 0,05 = |
8 Gpa |
= |
8000 |
Mpa = |
800 |
kN/cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A iz = |
7,5 |
15 |
= |
112,5 |
cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k = |
2/3 kser |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k - |
moduł podatności złacza |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kser - |
moduł podatności gwoździa na 1 cięcie wg 7.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kser = |
ru1.5 * |
d 0.8 |
= |
400 |
5 |
= |
1159,6 |
N/mm |
|
|
|
|
|
|
|
25 |
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k = |
2 |
1159,6 |
= |
773,1 |
N/mm |
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.2 Efektywny moment bezwładności |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Jefz = |
suma Jzi + |
gz * |
suma Ai * |
ezi2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Jefy = |
2 |
15 |
7,5 |
2 |
112,5 |
8,75 |
5 |
25 |
2 |
1,02 |
= |
31573 |
cm4 |
|
|
12 |
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.3 Smukłość efektywna |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31302,0833333333 |
|
|
|
lef,z = |
mz * |
l |
|
|
|
|
|
|
|
|
|
|
|
|
|
ief,z |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mz = |
1,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l = |
540 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ief,z = |
Jefz |
= |
31573 |
= |
8,15 |
cm |
|
|
|
|
|
|
|
|
|
Ac |
475 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lef,z = |
1,0 |
540 |
= |
66,23 |
|
|
|
|
|
|
|
|
|
|
|
8,15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.4 Współczynnik wyboczeniowy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
naprężenie krytyczne |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sc,cvitz = |
p2 |
* E 0,05 |
= |
3,14 |
8000 |
= |
17,98 |
Mpa |
|
|
|
|
|
|
|
lef,z2 |
66,23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
smukłość sprawdzona |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lred,z = |
f e,o,u |
= |
25 |
= |
1,18 |
|
|
|
|
|
|
|
|
|
|
sc,cvitz |
17,98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik kz |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kz = |
0,5[1+bc(lred.z - 0,5) + lerd.z2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bc - wsp dotyczacy prostoliniowości elementów |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bc = |
0,2 |
dla drewna litego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ky = |
1,26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik wyboczeniowy kc.z |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kc.z = |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
kz + |
kz2 - |
lred2,z |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kc.z = |
|
1 |
|
= |
0,58 |
|
|
|
|
|
|
|
|
|
|
1,26 |
1,26 |
1,18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.5 Sprawdzenie napręzeń w przekroju |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sc,o,d = |
N |
< |
fc,o,d = |
1,346 |
|
|
|
|
|
|
|
|
|
kc.z * |
Ac |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sc,o,d = |
105 |
= |
0,38 |
< |
1,35 |
Mpa |
|
|
|
|
|
|
|
0,58 |
475,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nośność połączeń |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Vdz= |
3,00 |
|
|
S1z= |
984,37 |
|
beta= |
1 |
|
|
|
|
|
|
|
Fdz= |
0,38 |
|
|
t2= |
66,5 |
|
t1= |
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rd1= |
2724,44 |
|
|
|
fh,1,k= |
20,24 |
|
|
|
|
|
|
|
|
|
Rd2= |
3623,51 |
|
|
|
fh,1,d= |
10,90 |
|
|
|
|
|
|
|
|
|
Rd3= |
1337,16 |
|
|
|
|
|
d= |
5 |
|
|
|
|
|
|
|
Rd4= |
1474,98 |
|
|
|
Myd= |
9091,83 |
|
|
|
|
|
|
|
|
|
Rd5= |
1189,86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rd6= |
1094,93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rd,min= |
1094,93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fdz= |
380,40 |
< |
Rd,min= |
1094,93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Vdy= |
6,54 |
|
S1y= |
1250 |
|
|
|
|
|
|
|
|
|
|
|
Fdy= |
1,10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fdy= |
1095,85 |
> |
Rd,min= |
1094,93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
Ćwiczenie projektowe nr 2 |
|
|
|
|
|
przekrój α-α |
|
|
|
|
|
|
|
|
|
Nośność belki stropowej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
1. Schemat statyczny |
|
|
|
|
α |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7,5 |
10 |
7,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
h1= |
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L= |
540 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
α |
e1= |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
h2= |
15 |
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
h1= |
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. Określenie cech geometrycznych i parametrów mechanicznych drewna |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- pole całkowite |
|
|
|
Ac= |
475,0 |
cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- moduł podatności gwoździa na 1 cięcie |
|
|
|
kser= |
1159,65 |
N/mm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- moduł podatności złącza |
|
|
|
k= |
773,1 |
N/mm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- wytrzymałość na rozciąganie |
|
|
|
ft,o,d= |
1,29 |
kN/cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,29230769230769 |
- klasa drewna |
|
|
|
|
C35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- efektywny moment bezwładności |
|
|
|
Jef,y= |
29739 |
cm4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- współczynnik redukcyjny |
|
|
|
γy= |
0,983 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- wytrzymałość na zginanie |
|
|
|
fm,k= |
35 |
MPa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- obliczeniowa wytrzymałość na zginanie |
|
|
|
fm,d= |
1,885 |
kN/cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- gęstość charakterystyczna drewna |
|
|
|
ρ= |
400 |
kg/m3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- obliczeniowa wytrzymałość na ściskanie |
|
|
|
fc,o,d= |
1,346 |
kN,cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. Nośność belki ze względu na zginanie |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.1 Naprężenia krawędziowe środnika |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
σh=(Mo*(h2/2))/Jef,y<fm,d σh= |
|
|
7472,88 |
15 |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29739 |
*2 |
1,885 |
kN/cm2 = |
18,85 |
MPa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mo=(fm,d*Jef,y)/(h2/2) |
|
Mo= |
1,885 |
29739 |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
/2 |
7472,88 |
kNcm = |
74,73 |
kNm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mo=(ql2)/8=>qo=(8*Mo)/l2 Mo= |
8 * |
7472,88 |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
*2 |
0,2050 |
kN/cm = |
20,50 |
kN/m |
|
|
|
|
|
|
|
|
|
|
|
|
3.2 Naprężenia krawędziowe półki |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
σf=σ1+σmf< fm,d |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.3 Naprężenia ściskające w osi pasów |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
σ1=(Mo*e1)/Jef,y*γ<fc,o,d σ1= |
|
|
4073,43 |
10,000 |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29739 |
0,983 |
1,346 |
kN/cm2 = |
13,46 |
MPa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mo=(fc,o,d*Jef,y)/(e1*γ) |
|
Mo= |
1,346 |
29739 |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
0,983 |
4073,43 |
kNcm = |
40,73 |
kNm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mo=(ql2)/8=>qo=(8*Mo)/l2 Mo= |
8 * |
4073,43 |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
*2 |
0,1118 |
kN/cm = |
11,18 |
kN/m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.4 Naprężenia rozciągające w osi pasów |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
σ1=(Mo*e1)/Jef,y*γ<ft,o,d σ1= |
|
|
3910,50 |
10,000 |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29739 |
0,983 |
1,292 |
kN/cm2 = |
12,92 |
MPa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mo=(fc,o,d*Jef,y)/(e1*γ) |
|
Mo= |
1,292 |
29739 |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
0,983 |
3910,50 |
kNcm = |
39,10 |
kNm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mo=(ql2)/8=>qo=(8*Mo)/l2 Mo= |
8 * |
3910,50 |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
*2 |
0,1073 |
kN/cm = |
10,73 |
kN/m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.5 Naprężenia krawędziowe od zginania |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
σmf=(Mo*h1)/Jef,y*2<fm,d σmf= |
|
|
11405,61 |
5,000 |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29739 |
*2 |
0,959 |
kN/cm2 = |
9,59 |
MPa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mo=(fm,d*(2*Jef,y))/(h1*γ) |
|
Mo= |
1,885 |
29739 |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
0,983 |
11405,61 |
kNcm = |
114,06 |
kNm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mo=(ql2)/8=>qo=(8*Mo)/l2 Mo= |
8 * |
11405,61 |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
*2 |
0,3129 |
kN/cm = |
31,29 |
kN/m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.6 Naprężenia łączne na krawędzi pasa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
σf=σmf+σ1<fm,d |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
qol2/8*h1+ |
qol2/8*e1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2*Jef,y |
Jef,y |
γ < fm,d= |
1,885 |
/ * Jef,y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
qol2 |
* h1 + |
qol2 |
* e1 *γ = |
1,885 |
29739 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
qo* |
540 |
2 |
540 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
5 |
+ go 8 |
10 |
0,983 |
= |
56046,5769230769 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
go * |
449351,708660604 |
= |
56046,5769230769 |
/ |
449351,708660604 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
go= |
0,12472763726689 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ćwiczenie projektowe nr 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
Dźwigar klejony |
|
|
|
|
|
|
|
|
|
|
|
1. Dane |
|
|
|
|
|
|
|
|
|
|
|
|
|
- rozpiętość dźwigara |
|
|
|
L= |
21 |
m |
|
|
|
|
|
|
|
- klasa użytkowania |
|
|
2 |
kmod= |
0,8 |
|
γf= |
1,3 |
|
|
|
|
|
- klasa drewna |
|
|
C35/30 |
|
|
|
|
|
|
|
|
|
|
- obciążenie charakterystyczne stałe |
|
|
|
gk= |
5 |
kN/m |
|
|
|
|
|
|
|
- obciążenie charakterystyczne zmienne |
|
|
|
pk= |
5 |
kN/m |
|
|
|
|
|
|
|
- sprężystość |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Eo,mean= |
13 |
Gpa = |
1300 |
kN/cm2 |
|
|
|
|
|
|
|
|
|
Gmean= |
0,81 |
Gpa = |
81 |
kN/cm2 |
|
|
|
|
|
|
|
|
|
E0,05= |
8,7 |
Gpa = |
870 |
kN/cm2 |
|
|
|
|
|
|
- wytrzymałość na zginanie |
|
|
|
|
fm,g,k= |
35 |
MPa = |
3,5 |
kN/cm2 |
|
|
|
|
- wytrzymałość na ściskanie w poprzek włókien |
|
|
|
|
fc,90,g,k= |
6 |
MPa = |
0,6 |
kN/cm2 |
|
|
|
|
- wytrzymałość na ścinanie |
|
|
|
|
fv,g,k= |
3,4 |
MPa = |
0,34 |
kN/cm2 |
|
|
|
|
- wytrzymałość na rozciąganie w poprzek włókien |
|
|
|
|
ft,90,g,k= |
0,4 |
MPa = |
0,04 |
kN/cm2 |
|
|
|
|
2. Obliczeniowe wytrzymałości |
|
|
|
|
|
|
|
|
|
|
|
|
|
- na zginanie |
|
fm,g,d= |
(fm,g,k*kmod) |
|
3,5 |
0,8 |
|
|
|
|
|
|
|
|
|
|
γf |
= |
1,3 |
= |
2,15 |
kN/cm2 |
|
|
|
|
- na ściskanie w poprzek włókien |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fc,90,g,d= |
(fc,90,g,k*kmod) |
|
0,6 |
0,8 |
|
|
|
|
|
|
|
|
|
|
γf |
= |
1,3 |
= |
0,369 |
kN/cm2 |
|
|
|
|
- na ścinanie |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fv,g,d= |
(fv,g,k*kmod) |
|
0,34 |
0,8 |
|
|
|
|
|
|
|
|
|
|
γf |
= |
1,3 |
= |
0,209 |
kN/cm2 |
|
|
|
|
- na rozciąganie w poprzek włókien |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ft,90,g,d= |
(ft,90,g,k*kmod) |
|
0,04 |
0,8 |
|
|
|
|
|
|
|
|
|
|
γf |
= |
1,3 |
= |
0,025 |
kN/cm2 |
|
|
|
|
3. Wstępny dobór przekroju |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
h= |
1,50 |
m |
|
|
|
|
|
|
|
|
|
hp= |
0,98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L= |
21 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
h=(1/12 - 1/17)*L |
|
h= |
1,75 |
1,24 |
przyjęto |
h= |
1,5 |
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b> |
8 cm |
|
|
|
|
|
|
|
|
|
|
|
|
h/b<10 |
0,07 |
m = |
7,1 |
cm |
przyjęto |
b= |
18 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hp=h-(0,5*L*tgα) |
|
hp= |
0,98 |
m = |
98 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tgα= |
0,0500 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GL 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,2h |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
C35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,6h |
C35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
h= |
150 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,2h |
C35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4. Ustalenie przekroju obliczeniowego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Xo= |
l*hp |
|
|
|
|
|
|
|
|
|
|
|
|
|
2*h |
= |
683 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hxo=hp+Xo*tgα |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hxo= |
132 |
cm |
|
|
|
|
|
|
|
|
|
|
|
- Wskaźnik wytrzymałości |
|
|
|
|
|
|
|
|
|
|
|
|
|
Wxo= |
b*h2 |
|
18 |
150 |
^2 |
|
|
|
|
|
|
|
|
|
6 |
= |
|
6 |
= |
67500 |
cm3 |
|
|
|
|
|
|
- Moment bezwładności |
|
|
|
|
|
|
|
|
|
|
|
|
|
Jxo= |
b*h3 |
|
18 |
150 |
^3 |
|
|
|
|
|
|
|
|
|
12 |
= |
|
12 |
= |
5062500 |
cm4 |
|
|
|
|
|
|
5. Obciążenia obliczeniowe i charakterystyczne |
|
|
|
|
|
|
|
|
|
|
|
|
|
- obciążenie obliczeniowe |
|
|
|
|
|
|
|
|
|
|
|
|
|
q= |
5,0 |
kN/m |
p= |
5,0 |
kN/m |
|
|
|
|
|
|
|
|
qo=q*1,1+p*1,4 |
|
|
qo= |
12,5 |
kN/m |
|
|
|
|
|
|
|
|
- obciążenie charakterystyczne |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q |
|
5,0 |
|
|
|
|
|
|
|
|
|
|
qk= |
1,1 |
+ p qk= |
1,1 + |
5,0 |
= |
9,55 |
kN/m |
|
|
|
|
|
|
6. Siły w przekroju obliczeniowym |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Qxo=qo*(0,5*L - Xo) |
|
|
Qxo= |
12,5 |
* 0,5 * |
21 |
6,83 |
= |
45,90 |
kN |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mxo= |
qo*xo |
|
|
12,5 |
6,83 |
|
|
|
|
|
|
|
|
|
2 |
* (L-xo) |
Mxo= |
2 |
* |
21 |
6,83 |
= |
604,794376545926 |
kN |
|
|
|
7. Naprężenia normalne w przekroju obliczeniowym |
|
|
|
|
|
|
|
|
|
|
|
|
|
- włókna dolne |
|
|
|
|
|
|
|
|
|
|
|
|
|
σm,o,d=(1+4tg2α)* |
|
Mxo |
=(1+4* |
0,05 |
2 * |
60479,4376545926 |
= |
0,90 |
kN/cm2 |
< |
fm,d= |
2,15 |
kN/cm2 |
|
|
Wxo |
|
|
|
67500 |
|
|
|
|
|
|
|
- włókna górne |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sinα |
0,049895690160708 |
|
fm,α,d= |
fm,d |
|
|
|
2,15 |
|
|
|
|
|
cosα |
0,99875443433478 |
|
|
fm,d |
*sinα2+cosα2 |
|
fm,α,d = |
2,15 |
0,049895690160708 |
0,99875443433478 |
= |
2,13 |
kN/cm2 |
|
|
|
|
fc,90,d |
|
|
|
0,369 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
σm,α,d=(1+4tg2α)* |
|
Mxo |
=(1+4* |
0,05 |
2 * |
60479,4376545926 |
= |
0,90 |
kN/cm2 |
< |
fm,α,d= |
2,13 |
kN/cm2 |
|
|
Wxo |
|
|
|
67500 |
|
|
|
|
|
|
|
8. Stateczność giętna przy zginaniu w przegroju obliczeniowym |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
σm,0,d<kcrit*fm,d |
|
|
|
|
|
|
|
|
|
|
|
- smukłość sprawdzona |
|
|
|
|
|
|
|
|
|
|
|
ld*hx*fm,d |
|
Eo, mean |
|
1300 |
|
|
|
|
|
λred,m= |
π*b2*Eo,oo5 * |
|
G mean |
λred,m= |
3,14 |
18 |
870 |
81 |
= |
0,53 |
|
|
|
gdzie: |
|
|
|
|
|
|
|
|
|
|
|
|
|
rozstaw płatwi |
|
ld= |
300 |
cm |
kcrit= |
1,56-0,75*λred,m |
|
kcrit= |
1,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
σm,0,d= |
0,90 |
< |
2,15 |
= |
1,00 |
2,15 |
|
|
|
|
|
|
9. Naprężenia w strefie kalenicowej |
|
|
|
|
|
|
|
|
|
|
|
|
|
h1=h-(0,5*h)*tgα |
|
h1= |
150 |
- 0,5 * |
150 |
0,0500 |
= |
146 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
h= |
150 |
cm |
|
|
|
|
|
|
|
|
h1= |
146 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- naprężenia normalne wzdłuż włókien |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mkmax= |
0,125* |
go * |
L2 |
Mkmax= |
0,125 * |
12,5 |
21 |
2 = |
689,0625 |
kNm |
|
|
|
- wskaźnik wytrzymałości |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bw*h2 |
|
18 |
150 |
|
|
|
|
|
|
|
|
|
Wk= |
6 |
Wk= |
6 |
= |
67500 |
cm3 |
|
|
|
|
|
|
|
- naprężenia |
|
|
|
|
|
|
|
|
|
|
|
|
|
σm,d= |
(1+1,4* |
0,0500 |
+ 5,4 * |
0,0500 |
68906,25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
67500 |
= |
1,0381582990019 |
kN/cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,0381582990019 |
kN/cm2 |
< |
kr= |
2,15 |
kN/cm2 |
|
|
|
|
|
|
|
- naprężenia rozciągające prostopadle do włókien w strefie ściskanej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gdzie: |
|
|
|
|
|
|
|
|
|
|
|
|
|
kdis= |
1,4 |
|
|
|
|
|
|
|
|
|
|
|
|
- objętość odnieniona stała |
|
|
Vo= |
0,01 |
m3 |
|
|
|
|
|
|
|
|
- objętość strefy kalenicowej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,5 |
1,46 |
1,5 |
0,18 |
|
|
|
|
|
|
|
|
|
V= 2* |
2 |
* |
2 * |
= |
0,40 |
m3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Vb= 2* |
1,5 |
1,46 |
21 |
0,18 |
|
|
|
|
|
|
|
|
|
|
2 |
* |
2 * |
= |
5,60 |
m3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V= |
0,40 |
< |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
5,60 |
= |
3,73278976935579 |
m3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
σm,o,d= |
0,90 |
< |
0,103976527873505 |
|
|
!!!!! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- naprężenia rozciągające dla dźwigara dwutrapezowego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68906,25 |
|
|
|
|
|
|
|
|
|
|
σt,90,d= |
0,2* |
0,0500 |
67500 |
= |
0,010199741188563 |
kN/cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
σt,90,d= |
0,010199741188563 |
< |
0,103976527873505 |
kN/cm2 |
|
|
|
|
|
|
|
|
|
|
Warunek spełniony |
|
|
|
|
|
|
|
|
|
|
10. Naprężenia ścinające na podporze |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- siła poprzeczna |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Qmax= |
12,5 |
21 |
= |
131,25 |
kN |
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
- moment statyczny |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sy= |
18 |
98 |
98 |
|
|
|
|
|
|
|
|
|
|
|
|
2 |
4 |
= |
21408,4544542872 |
cm3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Jy= |
18 |
98 |
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
= |
1392180,20652288 |
cm4 |
|
|
|
|
|
|
|
|
- naprężenia |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
τv= |
131,25 |
21408,4544542872 |
|
|
|
|
|
|
|
|
|
|
|
|
1392180 |
18 |
= |
0,11212866911753 |
kN/cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
τv= |
0,112 |
< |
0,209 |
kN/cm2 |
|
|
|
|
|
|
|
|
|
|
Warunek spełniony |
|
|
|
|
|
|
|
|
|
|
11. Sprawdzenie ugięć |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dla klasy 2: |
|
|
|
|
|
|
|
|
|
|
|
- obciążenie stałe |
|
|
kdef= |
0,8 |
|
|
|
|
|
|
|
|
|
- obciążenie zmienne |
|
|
kdef= |
0,25 |
|
|
|
|
|
|
|
|
|
- ugięcia doraźne ( z uwzględnieniem ścinania) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,5 |
2 |
|
|
|
|
|
|
|
|
|
|
|
1+19,2* |
21 |
|
= |
1,56 |
* UM |
|
|
|
|
|
|
Uinst= |
UM* |
0,15+0,85* |
|
0,98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1,5 |
|
|
|
|
|
|
|
|
|
- ugięcie od zginania |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Jk= |
18 |
150 |
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
= |
5062500 |
cm4 |
|
|
|
|
|
|
|
|
# ugięcie od obciążenia stałego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
UgM= |
5* |
5,0 |
21 |
4 |
|
|
|
|
|
|
|
|
|
|
384* |
1300 |
5062500 |
= |
1,92 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ugięcie od obciążenia zmiennego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
UpM= |
5* |
5,0 |
21 |
4 |
|
|
|
|
|
|
|
|
|
|
384* |
1300 |
5062500 |
= |
1,92 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- ugięcie kalenicowe |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ufin= |
1,56 |
1,92 |
(* 1 + |
0,8 |
1,56 |
1,92 |
(* 1+ |
0,25 |
) = |
9,17 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Unet,fin= |
L/200 = |
2100 |
/ 200 = |
10,5 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ufin= |
9,17 |
cm |
< |
Unet,fin= |
10,5 |
cm |
|
|
|
|
|
|
|
|
Warunek spełniony |
|
|
|
|
|
|
|
|
12. Naprężenia na docisk |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- powierzchnia docisku |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lop> |
131,25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
0,369 |
= |
19,7482638888889 |
>> lop= |
20 |
cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ap= |
20 |
18 |
= |
360 |
cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- naprężenia |
|
|
|
|
|
|
|
|
|
|
|
|
|
σc,90,d= |
131,25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
= |
0,36 |
kN/cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
σc,90,d= |
0,365 |
KN/cm2 |
< |
fc,90,d= |
0,369 |
kN/cm2 |
|
|
|
|
|
|
|
|
Warunek spełniony |
|
|
|
|
|
|
|
|