|
|
Y |
X1 |
X2 |
X3 |
X4 |
X5 |
|
|
|
|
|
|
|
|
|
|
1999 |
5,9 |
4,1 |
1207,1 |
13,1 |
5 |
6 |
|
|
|
|
|
|
|
|
|
|
2000 |
1,4 |
4 |
6543,6 |
15,1 |
2,8 |
3,9 |
|
|
|
|
|
|
|
|
|
|
2001 |
-9,5 |
1 |
-2529,2 |
17,4 |
2,2 |
-13,4 |
|
|
|
|
|
|
|
|
|
|
2002 |
-10 |
1,4 |
-4130,1 |
18 |
2,9 |
-7,2 |
|
|
|
|
|
|
|
|
|
|
2003 |
0,6 |
3,8 |
26155 |
20 |
2,5 |
3,3 |
|
|
|
|
|
|
|
|
|
|
2004 |
6,5 |
5,3 |
72133 |
19 |
3,9 |
14,7 |
|
|
|
|
|
|
|
|
|
|
2005 |
7,7 |
3,5 |
63799 |
17,6 |
2,6 |
1,4 |
|
|
|
|
|
|
|
|
|
|
2006 |
16,8 |
6,2 |
81304 |
14,8 |
5,1 |
16,8 |
|
|
|
|
|
|
|
|
|
|
2007 |
20,4 |
6,7 |
109836 |
11,2 |
4,7 |
23,7 |
|
|
|
|
|
|
|
|
|
|
2008 |
10,7 |
5 |
62996 |
9,5 |
6,3 |
2,9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y - tempo przyrostu inwestycji w % |
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 - tempo przysrostu PKB w % |
|
|
|
|
|
|
|
|
|
|
|
|
|
X2 - wynik finansowy netto przedsiębiorstw w mln zł |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X3 - stopa bezrobocia w % |
|
|
|
|
|
|
|
|
|
|
|
|
|
X4 - dynamika spozycia (ceny stale w %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
X5 - dynamika akumulacji (ceny stałe w %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
STATYSTYKA OPISOWA |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eliminacja zmiennych quasi stałych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
|
X2 |
|
X3 |
|
X4 |
|
X5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średnia |
4,1 |
Średnia |
41731,44 |
Średnia |
15,57 |
Średnia |
3,8 |
Średnia |
5,21 |
|
|
|
|
|
|
|
Błąd standardowy |
0,584807660688538 |
Błąd standardowy |
13018,3413213324 |
Błąd standardowy |
1,09352132530138 |
Błąd standardowy |
0,443471156521669 |
Błąd standardowy |
3,48400950375027 |
|
|
|
|
|
|
|
Mediana |
4,05 |
Mediana |
44575,5 |
Mediana |
16,25 |
Mediana |
3,4 |
Mediana |
3,6 |
|
|
|
|
|
|
|
Tryb |
#N/A |
Tryb |
#N/A |
Tryb |
#N/A |
Tryb |
#N/A |
Tryb |
#N/A |
|
|
|
|
|
|
|
Odchylenie standardowe |
1,84932420089069 |
Odchylenie standardowe |
41167,6099328964 |
Odchylenie standardowe |
3,45801805791828 |
Odchylenie standardowe |
1,40237893119751 |
Odchylenie standardowe |
11,0174054215238 |
|
|
|
|
|
|
|
Wariancja próbki |
3,42 |
Wariancja próbki |
1694772107,58711 |
Wariancja próbki |
11,9578888888889 |
Wariancja próbki |
1,96666666666667 |
Wariancja próbki |
121,383222222222 |
|
|
|
|
|
|
|
Kurtoza |
-0,355215931316269 |
Kurtoza |
-1,4660853783931 |
Kurtoza |
-0,757753576821477 |
Kurtoza |
-1,07839085648623 |
Kurtoza |
-0,088572327627588 |
|
|
|
|
|
|
|
Skośność |
-0,448506918071081 |
Skośność |
0,257296318109587 |
Skośność |
-0,559567512907311 |
Skośność |
0,530273274400667 |
Skośność |
0,031162832167701 |
|
|
|
|
|
|
|
Zakres |
5,7 |
Zakres |
113966,1 |
Zakres |
10,5 |
Zakres |
4,1 |
Zakres |
37,1 |
|
|
|
|
|
|
|
Minimum |
1 |
Minimum |
-4130,1 |
Minimum |
9,5 |
Minimum |
2,2 |
Minimum |
-13,4 |
|
|
|
|
|
|
|
Maksimum |
6,7 |
Maksimum |
109836 |
Maksimum |
20 |
Maksimum |
6,3 |
Maksimum |
23,7 |
|
|
|
|
|
|
|
Suma |
41 |
Suma |
417314,4 |
Suma |
155,7 |
Suma |
38 |
Suma |
52,1 |
|
|
|
|
|
|
|
Licznik |
10 |
Licznik |
10 |
Licznik |
10 |
Licznik |
10 |
Licznik |
10 |
|
|
|
|
|
|
|
Vs= |
45% |
Vs= |
99% |
Vs= |
22% |
Vs= |
37% |
Vs= |
211% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wszystkie kandydatki na zmienne objaśniające maja współczynnik zmienności powyżej 10%, dlatego można je wziąć do dalszej analizy. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KORELACJA |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y |
X1 |
X2 |
X3 |
X4 |
X5 |
|
|
|
|
|
|
|
|
|
|
1999 |
5,9 |
4,1 |
1207,1 |
13,1 |
5 |
6 |
|
|
|
|
|
|
|
|
|
|
2000 |
1,4 |
4 |
6543,6 |
15,1 |
2,8 |
3,9 |
|
|
|
|
|
|
|
|
|
|
2001 |
-9,5 |
1 |
-2529,2 |
17,4 |
2,2 |
-13,4 |
|
|
|
|
|
|
|
|
|
|
2002 |
-10 |
1,4 |
-4130,1 |
18 |
2,9 |
-7,2 |
|
|
|
|
|
|
|
|
|
|
2003 |
0,6 |
3,8 |
26155 |
20 |
2,5 |
3,3 |
|
|
|
|
|
|
|
|
|
|
2004 |
6,5 |
5,3 |
72133 |
19 |
3,9 |
14,7 |
|
|
|
|
|
|
|
|
|
|
2005 |
7,7 |
3,5 |
63799 |
17,6 |
2,6 |
1,4 |
|
|
|
|
|
|
|
|
|
|
2006 |
16,8 |
6,2 |
81304 |
14,8 |
5,1 |
16,8 |
|
|
|
|
|
|
|
|
|
|
2007 |
20,4 |
6,7 |
109836 |
11,2 |
4,7 |
23,7 |
|
|
|
|
|
|
|
|
|
|
2008 |
10,7 |
5 |
62996 |
9,5 |
6,3 |
2,9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wyznaczanie wektora R0 i macierzy R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R0 - wektor współczynników korelacji między zmienną objaśnianą Y a zmiennymi objaśniającymi Xi (i = 1, 2, 3, 4, 5) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R - macierz współczynników korelacji między zmiennymi objaśniającymi Xi (i = 1, 2, 3, 4, 5) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y |
X1 |
X2 |
X3 |
X4 |
X5 |
|
|
|
|
|
|
|
|
|
|
Y |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
0,951863764387005 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X2 |
0,878410276645995 |
0,834482794904113 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
X3 |
-0,593551985420791 |
-0,504908626324726 |
-0,353489747238705 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
X4 |
0,698093622729216 |
0,687200430706309 |
0,503007506683588 |
-0,814983320320464 |
1 |
|
|
|
|
|
|
|
|
|
|
|
X5 |
0,896221693878082 |
0,959302630005833 |
0,810838404300289 |
-0,364252808950175 |
0,554743746993466 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R0= |
0,951863764387005 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,878410276645995 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-0,593551985420791 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,698093622729216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,896221693878082 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
X2 |
X3 |
X4 |
X5 |
|
|
|
|
|
|
|
|
R0^2= |
0,906044625953 |
X1 |
R= |
1 |
0,834482794904113 |
0,504908626324726 |
0,687200430706309 |
0,959302630005833 |
X1 |
|
|
|
|
|
|
|
|
0,771604614117294 |
X2 |
|
0,834482794904113 |
1 |
0,353489747238705 |
0,503007506683588 |
0,810838404300289 |
X2 |
|
|
|
|
|
|
|
|
0,352303959396962 |
X3 |
|
0,504908626324726 |
0,353489747238705 |
1 |
0,814983320320464 |
0,364252808950175 |
X3 |
|
|
|
|
|
|
|
|
0,487334706095201 |
X4 |
|
0,687200430706309 |
0,503007506683588 |
0,814983320320464 |
1 |
0,554743746993466 |
X4 |
|
|
|
|
|
|
|
|
0,803213324577698 |
X5 |
|
0,959302630005833 |
0,810838404300289 |
0,364252808950175 |
0,554743746993466 |
1 |
X5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dobór zmiennych do modelu ekonometrycznego |
|
|
|
|
a) ustalenie liczby kombinacji: |
|
31 |
(nie interesują nas kombinacje 1- i 2-elementowe, więc są pominięte w obliczeniach) |
|
|
|
|
|
|
|
|
METODA HELLWIGA |
|
b)Wyznaczenie indywidualnych i integralnych wskaźników pojemności informacyjnej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H |
|
H' |
|
C16 |
X1 X2 X3 |
|
h161= |
0,387299285502668 |
h162= |
0,352657357099013 |
h163= |
0,189573971011086 |
|
|
|
|
0,929530613612766 |
3 |
0,946735325482304 |
|
C17 |
X1 X2 X4 |
|
h171= |
0,359301523978562 |
h172= |
0,33009960023928 |
h174= |
0,222506136415506 |
|
|
|
|
0,911907260633348 |
|
0,930885055659104 |
|
C18 |
X1 X2 X5 |
|
h181= |
0,324307163275506 |
h182= |
0,291686549954448 |
h185= |
0,289953946254181 |
|
|
|
|
0,905947659484135 |
|
0,929530613612766 |
|
C19 |
X1 X3 X4 |
|
h191= |
0,413320962771868 |
h193= |
0,151862227853513 |
h194= |
0,194763756217033 |
|
|
|
|
0,759946946842415 |
|
0,924482619918049 |
|
C20 |
X1 X3 X5 |
|
h201= |
0,367681392423385 |
h203= |
0,188482360457618 |
h205= |
0,345682875093606 |
|
|
|
|
0,901846627974609 |
|
0,918254577901042 |
|
C21 |
X1 X4 X5 |
|
h211= |
0,342355404534916 |
h214= |
0,217371472020862 |
h215= |
0,319490257588801 |
|
|
|
|
0,879217134144579 |
|
0,911907260633348 |
|
C22 |
X2 X3 X4 |
|
h222= |
0,415623891975652 |
h223= |
0,16246637538068 |
h224= |
0,210240135732146 |
|
|
|
|
0,788330403088478 |
|
0,905947659484135 |
|
C23 |
X2 X3 X5 |
|
h232= |
0,356509992982639 |
h233= |
0,205097066570099 |
h235= |
0,369277996106367 |
|
|
|
|
0,930885055659104 |
2 |
0,901846627974609 |
|
C24 |
X2 X4 X5 |
|
h242= |
0,333472773815434 |
h244= |
0,236828773752108 |
h245= |
0,339541505307019 |
|
|
|
|
0,909843052874562 |
|
0,89225638468968 |
|
C25 |
X3 X4 X5 |
|
h253= |
0,161663967784379 |
h254= |
0,205650141240776 |
h255= |
0,418559023511498 |
|
|
|
|
0,785873132536653 |
|
0,887377539487718 |
|
C26 |
X1 X2 X3 X4 |
|
h261= |
0,299361351076687 |
h262= |
0,28673739682827 |
h263= |
0,131782139528731 |
h264= |
0,1621642898251 |
|
|
0,880045177258788 |
|
0,880045177258788 |
|
C27 |
X1 X2 X3 X5 |
|
h271= |
0,274667675110359 |
h272= |
0,257303520594553 |
h273= |
0,158506184941958 |
h275= |
0,256257944835435 |
|
|
0,946735325482304 |
1 |
0,879217134144579 |
|
C28 |
X1 X2 X4 X5 |
|
h281= |
0,26028391482579 |
h282= |
0,245083879797634 |
h284= |
0,177538536968703 |
h285= |
0,241576288325921 |
|
|
0,924482619918049 |
|
0,857236174201623 |
|
C29 |
X1 X3 X4 X5 |
|
h291= |
0,287504368178857 |
h293= |
0,131253710763009 |
h294= |
0,159419778980958 |
h295= |
0,279058316278799 |
|
|
0,857236174201623 |
|
0,788330403088478 |
|
C30 |
X2 X3 X4 X5 |
|
h302= |
0,289279158301158 |
h303= |
0,139100706738352 |
h304= |
0,169641396913693 |
h305= |
0,294235122736477 |
|
|
0,89225638468968 |
|
0,785873132536653 |
|
C31 |
X1 X2 X3 X4 X5 |
|
h311= |
0,227312747504492 |
h312= |
0,220343979690993 |
h313= |
0,115979706929279 |
h314= |
0,136894270668221 |
h315= |
0,217723873108056 |
0,918254577901042 |
|
0,759946946842415 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Z przedstawionych wyliczeń najlepszą kombinacją jest kombinacja zmiennych {X1, X2, X3, X5}. Równie dobrą kombinacją jest kombinacja zmiennych {X2, X3, X5}.Do dalszej analizy poddałam kombinacje {X1, X2, X3}. |
|
Wcześniej wspomniane kombinacje pomimo wysokiego wskaźnika integralnej pojemności informacyjnej nie przeszły pozytywnie dalszej części weryfikacji modelu. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
REGRESJA |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kombinacja 3-elementowa X1, X2, X3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y |
X1 |
X2 |
X3 |
|
Y - tempo przyrostu inwestycji w % |
|
|
|
|
|
|
|
1999 |
5,9 |
4,1 |
1207,1 |
13,1 |
|
X1 - tempo przysrostu PKB w % |
|
|
|
|
|
|
|
2000 |
1,4 |
4 |
6543,6 |
15,1 |
|
X2 - wynik finansowy netto przedsiębiorstw w mln zł |
|
|
|
|
|
|
|
|
|
|
2001 |
-9,5 |
1 |
-2529,2 |
17,4 |
|
X3 - stopa bezrobocia w % |
|
|
|
|
|
|
|
2002 |
-10 |
1,4 |
-4130,1 |
18 |
|
|
|
|
|
|
|
|
|
|
|
|
2003 |
0,6 |
3,8 |
26155 |
20 |
|
|
|
|
|
|
|
|
|
|
|
|
2004 |
6,5 |
5,3 |
72133 |
19 |
|
|
|
|
|
|
|
|
|
|
|
|
2005 |
7,7 |
3,5 |
63799 |
17,6 |
|
|
|
|
|
|
|
|
|
|
|
|
2006 |
16,8 |
6,2 |
81304 |
14,8 |
|
|
|
|
|
|
|
|
|
|
|
|
2007 |
20,4 |
6,7 |
109836 |
11,2 |
|
|
|
|
|
|
|
|
|
|
|
|
2008 |
10,7 |
5 |
62996 |
9,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wielokrotność R |
0,980871354601151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R kwadrat |
0,962108614277096 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dopasowany R kwadrat |
0,80842536121341 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd standardowy |
2,48609743322078 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
Regresja |
3 |
1098,54523686773 |
366,181745622577 |
59,2461863600552 |
7,52340061237927E-05 |
|
|
|
|
|
|
|
|
|
|
|
Resztkowy |
7 |
43,2647631322687 |
6,18068044746696 |
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
10 |
1141,81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 95,0% |
Górne 95,0% |
|
|
|
|
|
|
|
|
Przecięcie |
0 |
#N/A |
#N/A |
#N/A |
#N/A |
#N/A |
#N/A |
#N/A |
|
|
|
|
|
|
|
|
X1 |
2,88075950602428 |
0,649636265609174 |
4,43441916427333 |
0,003028039479491 |
1,34461383806868 |
4,41690517397989 |
1,34461383806868 |
4,41690517397989 |
|
|
|
|
|
|
|
|
X2 |
8,29703951798446E-05 |
3,47714000550167E-05 |
2,38616780021988 |
0,048440892049488 |
7,49099370291498E-07 |
0,000165191690989 |
7,49099370291498E-07 |
0,000165191690989 |
|
|
|
|
|
|
|
|
X3 |
-0,653226864675022 |
0,108416503056361 |
-6,0251608035673 |
0,000528841663753 |
-0,909591157005215 |
-0,396862572344829 |
-0,909591157005215 |
-0,396862572344829 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Analityczna postac modelu: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y=2,88076X1 + 0,000083X2 -0,65323X3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.Weryfikacja merytoryczna |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a) sprawdzanie sensowności ocen parametrów ai |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a1= |
2,88075950602428 |
jeżeli tempo przyrostu PKB wzrośnie o 1% to tempo przyrostu inwestycji wzrośnie o 2,88076 % |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
przy pozostałych wartościach niezmienionych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a2= |
8,29703951798446E-05 |
jeżeli wynik finansowy netto przedsiębiorstw wzrośnie o 1 mn zł, to tempo przyrostu inwestycji wzrośnie o 0,000083% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
przy pozostałych wartościach niezmienionych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a3= |
-0,653226864675022 |
jeżeli stopa bezrobocia wzrośnie o 1%, to tempo przysrostu inwestycji spadnie o 0,65323% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
przy pozostałych wartościach niezmienionych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b) sprawdzanie własności koincydencji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynniki rj |
|
|
|
oszacowane parametry |
|
|
|
|
|
|
|
|
|
|
|
|
|
0,951863764387005 |
X1 |
|
X1 |
2,88075950602428 |
|
|
|
|
|
|
|
|
|
|
|
RO= |
0,878410276645995 |
X2 |
|
X2 |
8,29703951798446E-05 |
|
|
|
|
|
|
|
|
|
|
|
|
-0,593551985420791 |
X3 |
|
X3 |
-0,653226864675022 |
|
|
|
|
|
|
|
|
|
|
|
|
|
zgodność znaków |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sgn(a1) = sgn(r1) |
|
tak |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sgn(a2) = sgn(r2) |
|
tak |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sgn(a3) = sgn(r3) |
|
tak |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model ze zmiennymi X1, X2, X3 jest koincydentny. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.Weryfikacja statystyczna |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a) analiza wielkości błędów standardowych ocen parametrów |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s(ai) - bezwzględny średni bład szacunku parametrów |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s( a1 )= |
0,649636265609174 |
tempo przyrostu PKB odchyla się przeciętnie od średniej o 0,649636% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s( a2 )= |
3,47714000550167E-05 |
wynik finansowy netto przedsiębiorstwa odchyla się przeciętnie od średniej o 0,0000348 mln zł |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s( a3 )= |
0,108416503056361 |
stopa bezrobocia odchyla się przeciętnie od średniej o 0,108417% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y=2,88076X1 + 0,000083X2 - 0,653227X3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(0,649636) (0,0000348) (0,108417) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vi - względny błąd szacunku parametrow |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|a1|= |
2,88075950602428 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|a2|= |
8,29703951798446E-05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|a3|= |
0,653226864675022 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V1= |
23% |
<50% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V2= |
42% |
<50% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V3= |
17% |
<50% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wszystkie względne średnie błędy szacunku parametrów strukturalnych są mniejsze od 50%, dlatego ten etap weryfikacji można ocenić POZYTYWNIE. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b) analiza stopnia dopasowania modelu do danych statystycznych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R kwadrat |
0,962108614277096 |
> 0,6 |
|
Zmienność tempa przyrostu inwestycji w 96,2% jest wyjaśniana przez model. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c) badanie istotności zmiennych objaśniających |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test t-Studenta |
|
|
|
prawdopodobieństwo popełnienia błędu = 0,1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1: |
Ho: a1= 0 |
co oznacza, że zmienna X1 jest statystycznie nieistotna |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ha: a1 # 0 |
co oznacza, że zmienna X1 jest statystycznie istotna |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t1= |
4,43441916427333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t*= |
1,94318027429198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t1>t* |
odrzucamy Ho na rzecz Ha |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
zm. X1 jest istotna statystycznie, model z tą zmienną oceniamy pozytywnie |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prawdopodobieństwo popełnienia błędu polegającego na podjęciu złej decyzji weryfikacyjnej wynosi 0,1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X2: |
Ho: a2=0 |
co oznacza, że zmienna X2 jest statystycznie nieistotna |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ha: a2#0 |
co oznacza, że zmienna X2 jest statystycznie istotna |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t2= |
2,38616780021988 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t*= |
1,94318027429198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t2>t* |
odrzucamy Ho na rzecz Ha |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
zmienna X2 jest istotna statystycznie, model z tą zmienną oceniamy pozytywnie |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prawdopodobieństwo popełnienia błędu polegającego na podjęciu złej decyzji weryfikacyjnej wynosi 0,1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X3: |
Ho: a3=0 |
co oznacza, że zmienna X3 jest statystycznie nieistotna |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ha: a3#0 |
co oznacza, że zmienna X3 jest statystycznie istotna |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t3= |
6,0251608035673 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t*= |
1,94318027429198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t3>t* |
odrzucamy Ho na rzecz Ha |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
zmienna X3 jest istotna statystycznie, model z tą zmienną oceniamy pozytywnie |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prawdopodobieństwo popełnienia błędu polegającego na podjęciu złej decyzji weryfikacyjnej wynosi 0,1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Uogólniony test Walda |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ho: a1=a2=a3=0 |
|
|
|
Zmienne X1, X2, X3 są nieistotne statystycznie |
|
|
|
|
|
|
|
|
|
|
|
|
Ha: co najmniej jeden parametr jest #0 |
|
|
|
Istnieje taka zmienna Xi (i=1,2,3), która jest istotna statystycznie |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
59,2461863600552 |
|
|
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
F*= |
4,76 |
|
|
59,2461863600552 |
7,52340061237927E-05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F>F* |
odrzucamy Ho na rzecz Ha |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Istnieje taka zmienna Xi (i=1,2,3), która ma statystycznie istotny wpływ na zmienną Y, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prawdopodobieństwo popełnienia polegającego na podjęciu błędnej decyzji weryfikacyjnej wynosi 0,05. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.Test liczby serii |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ho:oszacowany model ekonometryczny jest liniowy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ha:oszacowany model ekonometryczny nie jest liniowy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Składniki resztowe |
|
|
liczba a : n1=4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
2,54600438852165 |
a |
|
liczba b : n2=6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
-0,802237445403121 |
b |
|
liczba serii r=6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
-0,804763337190035 |
b |
|
wartość krytyczna r*=3 dla poziomu istotności gama=0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
-1,93230371515132 |
b |
|
r>r* |
|
|
|
|
|
|
|
|
|
|
|
|
|
0,547560484679339 |
a |
|
nie ma podstaw do odrzucenia hipotezy zerowej o liniowej zależności |
|
|
|
|
|
|
|
|
|
|
|
|
|
-2,341618468611 |
b |
|
zmiennej objaśnianej od zmiennych objaśniających. |
|
|
|
|
|
|
|
|
|
|
|
|
|
3,8207063051165 |
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,8612236501377 |
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-0,698084130975847 |
b |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-2,72494533045819 |
b |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.Test Shapiro - Wilka |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ho: rozkład odchyleń losowych modelu jest normalny |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ha: rozkład odchyleń losowych modelu nie jest normalny |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t |
et |
e(t) |
a(n-t+1) |
e(n-t+1)-e(t) |
a(n-t+1)*(e(n-t+1)-e(t)) |
et^2 |
|
|
|
|
|
|
|
|
|
|
1 |
2,67063495264052 |
-2,93741945002003 |
0,5739 |
6,8701639405667 |
3,94278708549123 |
7,13229105026523 |
|
|
|
|
|
|
|
|
|
|
2 |
-0,8815659334062 |
-2,00062494361439 |
0,3291 |
4,67125989625491 |
1,53731163185749 |
0,777158494942345 |
|
|
|
|
|
|
|
|
|
|
3 |
-0,299336042319103 |
-1,64553617386017 |
0,2141 |
3,25154659278037 |
0,696156125514278 |
0,089602066231264 |
|
|
|
|
|
|
|
|
|
|
4 |
-1,64553617386017 |
-0,8815659334062 |
0,1224 |
0,878047437189737 |
0,107473006312024 |
2,70778929948238 |
|
|
|
|
|
|
|
|
|
|
5 |
-0,003518496216463 |
-0,441388822671023 |
0,0399 |
0,14205278035192 |
0,005667905936042 |
1,23798156252632E-05 |
|
|
|
|
|
|
|
|
|
|
6 |
-2,93741945002002 |
-0,299336042319103 |
|
|
|
8,62843302535595 |
|
|
|
|
|
|
|
|
|
|
7 |
3,93274449054667 |
-0,003518496216463 |
|
|
|
15,4664792279252 |
|
|
|
|
|
|
|
|
|
|
8 |
1,6060104189202 |
1,6060104189202 |
|
|
|
2,57926946568023 |
|
|
|
|
|
|
|
|
|
|
9 |
-0,441388822671023 |
2,67063495264052 |
|
|
|
0,194824092778912 |
|
|
|
|
|
|
|
|
|
|
10 |
-2,00062494361439 |
3,93274449054667 |
|
|
|
4,0025001650121 |
|
|
|
|
|
|
|
|
|
|
suma |
|
|
|
|
6,28939575511106 |
41,5783592674892 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
W= |
0,951 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
W*= |
0,842 |
dla poziomu istotności 0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
W>W* |
nie ma podstaw do odrzucenia H0 mówiącej, że rozkład odchyleń losowych jest normalny |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5. Test Durbina -Watsona |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ho: q=0 |
nie wystepuje autokoralecja skladnika losowego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ha : q<0 |
istnieje ujemna autokorelacja składnika losowego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacja |
et |
et-1 |
(et-et-1) |
(et-et-1)^2 |
et^2 |
|
|
|
|
|
|
|
|
|
|
|
1 |
2,67063495264052 |
- |
- |
- |
7,13229105026523 |
|
|
|
|
|
|
|
|
|
|
|
2 |
-0,8815659334062 |
2,67063495264052 |
-3,55220088604672 |
12,6181311348311 |
0,777158494942345 |
|
|
|
|
|
|
|
|
|
|
|
3 |
-0,299336042319103 |
-0,8815659334062 |
0,582229891087097 |
0,338991646075293 |
0,089602066231264 |
|
|
|
|
|
|
|
|
|
|
|
4 |
-1,64553617386017 |
-0,299336042319103 |
-1,34620013154107 |
1,8122547941612 |
2,70778929948238 |
|
|
|
|
|
|
|
|
|
|
|
5 |
-0,003518496216463 |
-1,64553617386017 |
1,64201767764371 |
2,69622205369445 |
1,23798156252632E-05 |
|
|
|
|
|
|
|
|
|
|
|
6 |
-2,93741945002002 |
-0,003518496216463 |
-2,93390095380356 |
8,60777480672945 |
8,62843302535595 |
|
|
|
|
|
|
|
|
|
|
|
7 |
3,93274449054667 |
-2,93741945002002 |
6,8701639405667 |
47,1991525702629 |
15,4664792279252 |
|
|
|
|
|
|
|
|
|
|
|
8 |
1,6060104189202 |
3,93274449054667 |
-2,32673407162647 |
5,4136914400675 |
2,57926946568023 |
|
4-du < DW < 4-dl |
odejmujemy 4 |
|
|
|
|
|
|
9 |
-0,441388822671023 |
1,6060104189202 |
-2,04739924159122 |
4,19184365446831 |
0,194824092778912 |
|
-du < DW - 4 < -dl |
mnożymy przez -1 |
|
|
|
|
|
|
|
10 |
-2,00062494361439 |
-0,441388822671023 |
-1,55923612094337 |
2,43121728085453 |
4,0025001650121 |
|
du > DW+4 > dl |
DW+4 = DW' |
|
|
|
|
|
|
suma |
|
|
|
85,3092793811447 |
41,5783592674892 |
|
dl < DW' <du |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dw= |
2,05177118299253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q= |
-0,025885591496264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dw'= |
1,94822881700747 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wartość krytyczna z rozkładu Durbina - Watsona dl i du, dla poziomu istotności 0,05; 10 obserwacji i 3 zmiennych objaśniajacych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dl=0,525 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
du=2,016 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dl<Dw'<du |
|
Test Durbina Watsona nie rozstrzyga o istnieniu autokorelacji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.Test na istotność współczynnika autokorelacji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ho : q=0 |
nie następuje autokorelacja składnika losowego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ha : q#0 |
istnieje autokorelacja składnika losowego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q= |
-0,025885591496264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n= |
10 |
|
|
|
|
obliczenia pomocnicze dla obliczenia wartości I |
|
|
|
|
|
|
|
|
|
|
k= |
3 |
|
|
|
|
licznik |
0,068498501443462 |
mianownik |
0,999664911934438 |
|
|
|
|
|
|
|
|
I= |
0,06852146216767 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I*= |
2,36462425094932 dla a=0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I*>I |
nie ma podstaw do odrzucenia Ho, współczynnik autokorelacji jest nieistotny |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PROGNOZY |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I ) prognoza punktowa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y=2,88076X1+0,000083X2-0,653227X3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
X2 |
X3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4,1 |
1207,1 |
13,1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
6543,6 |
15,1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
-2529,2 |
17,4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,4 |
-4130,1 |
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3,8 |
26155 |
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5,3 |
72133 |
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3,5 |
63799 |
17,6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6,2 |
81304 |
14,8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6,7 |
109836 |
11,2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
62996 |
9,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A) prognoza dla tempa pryzrostu PKB (X1) na 3 kolejne lata |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4,1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,4 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3,8 |
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5,3 |
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3,5 |
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6,2 |
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6,7 |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wielokrotność R |
0,603270795600568 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R kwadrat |
0,363935652824542 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dopasowany R kwadrat |
0,284427609427609 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd standardowy |
1,56437130367364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
Regresja |
1 |
11,2019393939394 |
11,2019393939394 |
4,57734384190095 |
0,064829608873779 |
|
|
|
|
|
|
|
|
|
|
|
Resztkowy |
8 |
19,5780606060606 |
2,44725757575758 |
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
9 |
30,78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 95,0% |
Górne 95,0% |
|
|
|
|
|
|
|
|
Przecięcie |
2,07333333333333 |
1,06866904856159 |
1,94010796525267 |
0,088331571756109 |
-0,39102190977853 |
4,5376885764452 |
-0,39102190977853 |
4,5376885764452 |
|
|
|
|
|
|
|
|
t |
0,368484848484848 |
0,172231612054817 |
2,13947279531686 |
0,064829608873779 |
-0,028681960798329 |
0,765651657768026 |
-0,028681960798329 |
0,765651657768026 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1=2,073333+0,368485t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t11 |
X1,11= |
6,12666666666667 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t12 |
X1,12= |
6,49515151515151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t13 |
X1,13= |
6,86363636363636 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B) prognoza dla wyniku finansowego netto przedsiebiorstw (X2) na trzy kolejne lata |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X2 |
t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1207,1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6543,6 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-2529,2 |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-4130,1 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26155 |
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72133 |
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63799 |
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81304 |
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109836 |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62996 |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wielokrotność R |
0,868305411838971 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R kwadrat |
0,753954288228845 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dopasowany R kwadrat |
0,72319857425745 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd standardowy |
21659,0705176565 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
Regresja |
1 |
11500026282,7735 |
11500026282,7735 |
24,5142833923508 |
0,001119209439561 |
|
|
|
|
|
|
|
|
|
|
|
Resztkowy |
8 |
3752922685,51055 |
469115335,688818 |
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
9 |
15252948968,284 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 95,0% |
Górne 95,0% |
|
|
|
|
|
|
|
|
Przecięcie |
-23204,5 |
14795,9619487249 |
-1,56829951850476 |
0,155448580188673 |
-57324,0494098961 |
10915,0494098961 |
-57324,0494098961 |
10915,0494098961 |
|
|
|
|
|
|
|
|
t |
11806,5345454545 |
2384,58518262565 |
4,95119009858749 |
0,001119209439561 |
6307,67125811597 |
17305,3978327931 |
6307,67125811597 |
17305,3978327931 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X2=-23204,5+11806,53t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t11 |
X2,11= |
106667,38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t12 |
X2,12= |
118473,914545455 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t13 |
X2,13= |
130280,449090909 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
C) prognoza dla stopy bezrobocia (X3) na trzy kolejne lata |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X3 |
t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13,1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15,1 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17,4 |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17,6 |
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14,8 |
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11,2 |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9,5 |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wielokrotność R |
0,397444357947273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R kwadrat |
0,15796201766412 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dopasowany R kwadrat |
0,052707269872136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd standardowy |
3,36565316277854 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
Regresja |
1 |
17,0000303030303 |
17,0000303030303 |
1,50075907242019 |
0,255397583272298 |
|
|
|
|
|
|
|
|
|
|
|
Resztkowy |
8 |
90,6209696969697 |
11,3276212121212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
9 |
107,621 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 95,0% |
Górne 95,0% |
|
|
|
|
|
|
|
|
Przecięcie |
18,0666666666667 |
2,29917881695253 |
7,85787800994675 |
4,9670978730628E-05 |
12,7647508115804 |
23,368582521753 |
12,7647508115804 |
23,368582521753 |
|
|
|
|
|
|
|
|
t |
-0,453939393939394 |
0,370546217820211 |
-1,22505472221456 |
0,255397583272298 |
-1,30842050381116 |
0,400541715932368 |
-1,30842050381116 |
0,400541715932368 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X3=18,06667-0,45394t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t11 |
X3,11= |
13,0733333333333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t12 |
X3,12= |
12,6193939393939 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t13 |
X3,13= |
12,1654545454545 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prognoza punktowa zmiennych objaśniajacych X3,X4,X5 na trzy nastepne lata-podsumowanie |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y=2,88076X1+0,000083X2-0,653227X3 |
|
|
|
|
|
|
|
|
|
|
Rok |
|
X1 |
X2 |
X3 |
Y |
|
|
|
|
|
|
|
|
|
|
|
2009 |
t11 |
6,12666666666667 |
106667,38 |
13,0733333333333 |
17,9629944933333 |
|
|
|
|
|
|
|
|
|
|
|
2010 |
t12 |
6,49515151515151 |
118473,914545455 |
12,6193939393939 |
20,3009787412121 |
|
|
|
|
|
|
|
|
|
|
|
2011 |
t13 |
6,86363636363636 |
130280,449090909 |
12,1654545454545 |
22,6389629890909 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ŚREDNI BŁĄD PREDYKCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
EX ANTE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
obliczenia: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd standardowy |
2,48609743322078 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Se^2(a)= |
6,18068044746696 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
4,1 |
1207,1 |
13,1 |
|
|
|
|
|
|
|
|
|
|
|
|
X= |
1 |
4 |
6543,6 |
15,1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
1 |
-2529,2 |
17,4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
1,4 |
-4130,1 |
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
3,8 |
26155 |
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
5,3 |
72133 |
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
3,5 |
63799 |
17,6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
6,2 |
81304 |
14,8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
6,7 |
109836 |
11,2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
5 |
62996 |
9,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
XT= |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
|
|
|
|
|
|
|
4,1 |
4 |
1 |
1,4 |
3,8 |
5,3 |
3,5 |
6,2 |
6,7 |
5 |
|
|
|
|
|
|
|
1207,1 |
6543,6 |
-2529,2 |
-4130,1 |
26155 |
72133 |
63799 |
81304 |
109836 |
62996 |
|
|
|
|
|
|
|
13,1 |
15,1 |
17,4 |
18 |
20 |
19 |
17,6 |
14,8 |
11,2 |
9,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
XTX= |
10 |
41 |
417314,4 |
155,7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
198,88 |
2282768,57 |
609,31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
417314,4 |
2282768,57 |
32668079813,02 |
6044685,29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
155,7 |
609,31 |
6044685,29 |
2531,87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(XTX)^-1= |
6,03866995463191 |
-0,60189032739654 |
1,22339905644277E-05 |
-0,25571365802865 |
|
|
|
|
|
|
|
|
|
|
|
|
|
-0,601890327396539 |
0,128273698320787 |
-4,31986627585907E-06 |
0,016457444096362 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1,22339905644277E-05 |
-4,31986627585907E-06 |
2,20403008652084E-10 |
-2,38938584764895E-07 |
|
|
|
|
|
|
|
|
|
|
|
|
|
-0,25571365802865 |
0,016457444096362 |
-2,38938584764898E-07 |
0,01273021120407 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D^2(a)= |
37,3230893172997 |
-3,72009177805928 |
7,56143862760538E-05 |
-1,58048440632793 |
|
|
|
|
|
|
|
|
|
|
|
|
|
-3,72009177805928 |
0,792818739135562 |
-2,66997130268741E-05 |
0,101718202941663 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7,56143862760535E-05 |
-2,66997130268741E-05 |
1,36224056613883E-09 |
-1,47680303900182E-06 |
|
|
|
|
|
|
|
|
|
|
|
|
|
-1,58048440632793 |
0,101718202941663 |
-1,47680303900183E-06 |
0,07868136748112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dla okresu jedenastego ( t11 ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x11*= |
6,12666666666667 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106667,38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13,0733333333333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x11*T= |
1 |
6,12666666666667 |
106667,38 |
13,0733333333333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x11*T*D^2(a)= |
1,93471602603726 |
-0,380948098493258 |
3,80340381879332E-05 |
-0,086189849715199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(x11*T*D^2(a))*x11*= |
|
2,53097657831865 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd prognozy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sp11= |
2,95155163020836 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tempo przyrostu inwestycji w prognozowanym roku 2009 odchyla się przeciętnie od średniej o 2,951552 punkta procentowego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Względny średni błąd prognozy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V11= |
16% |
<50% |
prognoza ta jest przydatna,gdyż wzgledny średni błąd prognozy ex ante nie przekracza 50% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dla okresu dwunastego ( t12 ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x12*= |
6,49515151515151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118473,914545455 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12,6193939393939 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x12*T= |
1 |
6,49515151515151 |
118473,914545455 |
12,6193939393939 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x12*T*D^2(a)= |
2,17410656809009 |
-0,450211389128397 |
4,49493178584666E-05 |
-0,101860731481599 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(x12*T*D^2(a))*x12*= |
|
3,28981632717364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd prognozy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sp12= |
3,07741722466106 |
Tempo przyrostu inwestycji w prognoowanym roku 2010 odchyla się przeciętnie od średniej o 3,077417 punkta procentowego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Względny średni błąd prognozy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V12= |
15% |
<50% |
prognoza ta jest przydatna,gdyż nie przekracza 50% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dla okresu trzynastego ( t13 ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6,86363636363636 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x13*= |
130280,449090909 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12,1654545454545 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x13*T= |
1 |
6,86363636363636 |
130280,449090909 |
12,1654545454545 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x13*T*D^2(a)= |
|
2,41349711014292 |
-0,519474679763535 |
5,18645975289999E-05 |
-0,117531613247999 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(x13*T*D^2(a))*x13*= |
|
4,17512936750446 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd prognozy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sp13= |
5,17790490748571 |
Tempo przyrostu inwestycji w prognoowanym roku 2011 odchyla się przeciętnie od średniej o 5,177905 punkta procentowego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Względny średni błąd prognozy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V13= |
23% |
<50% |
prognoza ta jest przydatna,gdyż nie przekracza 50% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prognoza przedziałowa |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dla okresu jedenastego ( t11 ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Yd= |
10,9825748878906 |
|
|
13,9608392108855 |
|
|
|
|
|
|
|
|
|
|
|
|
Yg= |
24,9434140987761 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
P(10,98257<Y11<24,94341)=0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prawdopodobieństwo ze tempo przyrostu inwestycji w roku 2009 będzie kształtować się w przedziale się w przedziale od 10,98257 do 24,94341 wynosi 95% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dla okresu dwunastego ( t12 ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Yd= |
13,2044546211437 |
|
|
14,1930482401368 |
|
|
|
|
|
|
|
|
|
|
|
|
Yg= |
27,3975028612805 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
P(13,20445<Y<27,3975)=0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prawdopodobieństwo ze tempo przyrostu inwestycji w roku 2010 będzie kształtować się na poziomie w przedziale od 13,20445 do 27,3975 wynosi 95% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dla okresu trzynastego ( t13 ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Yd= |
10,9265420883582 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Yg= |
34,3513838898236 |
|
|
23,4248418014654 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
P(10,92654<Y<35,35138)=0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prawdopodobieństwo ze tempo przyrostu inwestycji w roku 2011 będzie kształtować się na poziomie w przedziale od 10,92654 do 34,35138 wynosi 95% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|