analiza 2 kolokwium nr 2 gr A D


Analiza matematyczna 2 Analiza matematyczna 2
II kolokwium, semestr letni 2003/2004 II kolokwium, semestr letni 2003/2004
Na pierwszej stronie pracy proszę napisać nazwę kursu, z którego odbywa się kolokwium, Na pierwszej stronie pracy proszę napisać nazwę kursu, z którego odbywa się kolok-
swoje imię i nazwisko, numer indeksu, wydział, kierunek, rok studiów, imię i nazwisko wium, swoje imię i nazwisko, numer indeksu, wydział, kierunek, rok studiów, imię
wykładowcy (osoby prowadzącej ćwiczenia), datę oraz sporządzić poniższą tabelkę. Po- i nazwisko wykładowcy (osoby prowadzącej ćwiczenia), datę oraz sporządzić poniższą
nadto proszę ponumerować i podpisać wszystkie pozostałe kartki pracy. tabelkę. Ponadto proszę ponumerować i podpisać wszystkie pozostałe kartki pracy.
1 2 3 4 Suma 1 2 3 4 Suma
A5 B5
Treści zadań proszę nie przepisywać. Rozwiązanie zadania o numerze n należy napi- Treści zadań proszę nie przepisywać. Rozwiązanie zadania o numerze n należy na-
sać na n-tej kartce pracy. Na rozwiązanie zadań przeznaczono 60 minut, za rozwiązanie pisać na n-tej kartce pracy. Na rozwiązanie zadań przeznaczono 60 minut, za rozwią-
każdego zadania można otrzymać od 0 do 5 punktów. W rozwiązaniach należy dokładnie zanie każdego zadania można otrzymać od 0 do 5 punktów. W rozwiązaniach należy
opisywać przebieg rozumowania, tzn. formułować wykorzystywane definicje i twierdzenia, dokładnie opisywać przebieg rozumowania, tzn. formułować wykorzystywane definicje
przytaczać stosowane wzory, uzasadniać wyciągane wnioski. Ponadto proszę sporządzać twierdzenia, przytaczać stosowane wzory, uzasadniać wyciągane wnioski. Ponadto pro-
staranne rysunki z pełnym opisem. Powodzenia! szę sporządzać staranne rysunki z pełnym opisem. Powodzenia!
Teresa Jurlewicz Teresa Jurlewicz
ZADANIA ZADANIA
5
2
1. Wskazać kierunek, w którym przyrost funkcji
1. Obliczyć pochodną kierunkową w kierunku wektora u = ( , )
3 3
w punkcie ( 0, 0 ) funkcji
f ( x, y ) = ( x - 3 )2 - ( x - 3 ) ( y + 1 ) + ( y + 1 )2
3
g ( x, y ) = 27x3 - y3 .
w otoczeniu punktu A = ( 4, 0 ) jest największy.
2. Znajdując minimum odpowiedniej funkcji dwóch zmiennych obliczyć
2. Spośród wszystkich prostopadłościanów o objętości V = 8
odległość między prostymi
wybrać ten, którego przekątna jest najkrótsza.
l : ( x, y, z ) = ( 1 + t, t, -2 + t ), t " R,
3. Wprowadzając współrzędne biegunowe obliczyć pole figury określo-
k : ( x, y, z ) = ( 3s, -1 + s, s ), s " R.
nej zależnością
( x2 + y2 )3 d" 4 x2y2 .
3. Obliczyć moment statyczny jednorodnego trójkąta prostokątnego
Sporządzić rysunek.
o masie M = 120 i przyprostokątnych a = 6, b = 8 względem
jego przeciwprostokÄ…tnej.
4. Jaka jest średnia wartość funkcji g ( x, y, z ) = y na obszarze
V ‚" R3 ograniczonym powierzchniami
4. W przestrzeni R3 dany jest obszar U ograniczony powierzchniami
z = 0, z = 3, x - y = 0, y = x . Naszkicować go i obliczyć całkę
x = 0, y = 1, z = 0, y = 2, x = y, z = xy ?
xz dv.
+"+"+"
U
Analiza matematyczna 2 Analiza matematyczna 2
II kolokwium, semestr letni 2003/2004 II kolokwium, semestr letni 2003/2004
Na pierwszej stronie pracy proszę napisać nazwę kursu, z którego odbywa się kolokwium, Na pierwszej stronie pracy proszę napisać nazwę kursu, z którego odbywa się kolok-
swoje imię i nazwisko, numer indeksu, wydział, kierunek, rok studiów, imię i nazwisko wium, swoje imię i nazwisko, numer indeksu, wydział, kierunek, rok studiów, imię
wykładowcy (osoby prowadzącej ćwiczenia), datę oraz sporządzić poniższą tabelkę. Po- i nazwisko wykładowcy (osoby prowadzącej ćwiczenia), datę oraz sporządzić poniższą
nadto proszę ponumerować i podpisać wszystkie pozostałe kartki pracy. tabelkę. Ponadto proszę ponumerować i podpisać wszystkie pozostałe kartki pracy.
1 2 3 4 Suma 1 2 3 4 Suma
C5 D5
Treści zadań proszę nie przepisywać. Rozwiązanie zadania o numerze n należy napi- Treści zadań proszę nie przepisywać. Rozwiązanie zadania o numerze n należy na-
sać na n-tej kartce pracy. Na rozwiązanie zadań przeznaczono 60 minut, za rozwiązanie pisać na n-tej kartce pracy. Na rozwiązanie zadań przeznaczono 60 minut, za rozwią-
każdego zadania można otrzymać od 0 do 5 punktów. W rozwiązaniach należy dokładnie zanie każdego zadania można otrzymać od 0 do 5 punktów. W rozwiązaniach należy
opisywać przebieg rozumowania, tzn. formułować wykorzystywane definicje i twierdzenia, dokładnie opisywać przebieg rozumowania, tzn. formułować wykorzystywane definicje
przytaczać stosowane wzory, uzasadniać wyciągane wnioski. Ponadto proszę sporządzać twierdzenia, przytaczać stosowane wzory, uzasadniać wyciągane wnioski. Ponadto pro-
staranne rysunki z pełnym opisem. Powodzenia! szę sporządzać staranne rysunki z pełnym opisem. Powodzenia!
Teresa Jurlewicz Teresa Jurlewicz
ZADANIA ZADANIA
1. Znalezć najmniejszą i największą wartość funkcji 1. Prostopadłościan, którego trzy ściany przylegają do płaszczyzn ukła-
du współrzędnych jest ograniczony płaszczyzną 3x + y + 2z = 6.
g ( x, y ) = 4xy - 2x - y
Kiedy jego objętość jest największa?
na zbiorze D = { ( x, y ) " R2 : y d" x , x d" 3y }.
Ä„ Ä„
2. Napisać równanie stycznej w punkcie ( x0, y0 ) = ( , - ) do
6 6
2. Napisać równanie stycznej do krzywej krzywej
6x sin x + 6y sin y = Ä„.
y x xy
x e + y e = e
3. Obliczyć moment statyczny względem osi Oy obszaru
w punkcie przecięcia tej krzywej z osią Oy.
D = { ( x, y ) : 1 d" x2 + y2 d" 2x }
3. Znalezć współrzędne środka masy jednorodnego obszaru płaskiego
ograniczonego krzywymi
1
o gęstości powierzchniowej masy à ( x, y ) = .
x2 + y2
y = ex , x = 0, x = 1, y e" 0.
4. Uzupełnić zapis
4. Obliczyć objętość bryły ograniczonej powierzchniami
1 1-x2 1-x2
z = 2 - x2 - y2, z = - 4 - x2 - y2 .
dx dy f ( x, y, z ) dz = dy dz f ( x, y, z ) dx.
+" +" +"
+" +" +"
y
-1 0


Wyszukiwarka

Podobne podstrony:
analiza 2 kolokwium nr 2 gr E H
analiza 2 kolokwium gr E H
analiza 2 kolokwium gr A D
Kolokwium nr 1 zestawy przykładowe
Zadania domowe ISD kolokwium nr 22
Rozwiazania Kolokwium nr 2
przykladowe zadania na kolokwium nr 1? di 09
Kolokwia nr 1v2 B
kolokwium nr 1 rozwiÄ…zanie Plichta
Pytania z kolokwium nr 2 z Geologii Czwartorzędu Błażej (1)
kolokwium kolokwium nr 1 lab123 (2013)

więcej podobnych podstron