Troickij E V Konspekt lekcij po differencial#noj geometrii i topologii (1998)(ru)(48s)

background image

(

.

.

,

3-

$

,

%& %&,

%

1997/98

$,. -&)

1.

1.1.

X : X

X

!

0

1

), :

1)

(xy) = 0

,

x = y

8

xy

2

X ( )

2)

(xy) = (yx)

8

xy

2

X ( )

3)

(xz)

(xy) + (yz)

8

xyz

2

X ( "#).

% (

X)

.

%&

Y

X

' ' &.

Y diamY := sup

xy

2

Y

(xy). ( ' -

.

B

"

(

x) :=

f

y

2

X

j

(yx) < "

g

:

Y

X Z

X | (YZ) := inf

y

2

Yz

2

Z

(yz).

+

(yY ) = 0, y |

Y .

Y

Y :=

f

' &

Y

g

. ,', '

Y

Y . ( Y

,

Y = Y . -' x

Y ,

" > 0 , ' B

"

(

x)

Y ( ', x

2

Y ).

Y

&# Int

Y

Y " . '. ( Y

,

Y = IntY .

1.2.

%#

X | ' &. -" Y

X "

# ", "

X

n

Y .

1.3.

X

|

.

!

1

X

"

2

O

"

3

O

#$!

S

2

A

U

%#

#

&

!'

U

X

"

4

O

k

T

i=1

U

i

#

&

!'

U

i

X

-

"

1

"

2

X

"

1

background image

3

T

2

A

F

%#

#

&

!'

F

X

"

4

#$!

k

S

i=1

F

i

#

&

!'

F

i

X

-

"

.

/ &0 ' k O

)

k 1

8

k. 20 1 , 2 ,

'. 3 3,. %#

U =

S

2

A

U

x

2

U. -" 0 , '

x

2

U

B

"()

U

. -"

B

"()

U

U.

3 4 ,. %#

U =

k

T

i=1

U

i

,

x

2

U. -" "

i

(

i = 1:::k)

., '

x

2

B

"

i

(

x)

U

i

. %#

" := min

f

"

1

:::"

k

g

. -"

B

"

(

x)

B

"

i

(

x)

U

i

8

i. 1', B

"

(

x)

U.

2

1.4.

%#, ' ' # #.

1.5.

3#, '

B

"

(

x) .

1.6.

3#, ' Int

Y .

1.7.

3#, '

Y .

1.8.

%

X " &-

(5 &

),

:

1)

X

2

2)

2

3)

U

2

8

2

A,

S

2

A

U

2

4)

U

1

:::U

k

2

,

k

T

i=1

U

i

2

.

% (

X)

%

.

(

F =

X

n

U, " U

2

,

.

1.9.

%# . 0 1 1 { 4 1.

!

1.10.

(' & &"'.

1.11.

% & &"'" & (

X), -

" 0 0 (": &" ).

1.12.

)

'

x

2

X (& Y

X) -

(") .

Y

X

| '

x

2

X, ' # & &' Y .

Y | 5 Y . ' & Y ( ' Y

Y ).

-'

x

2

Y

'0

Y , 0 #

U ' x, ' x

2

U

2

Y . 2&# . . ' Y

Y ' IntY .

1.13.

Y

X " # ", " Y = Y .

1.14.

Y .

1.15.

%#

Y

X, (X) | &"' &. -&-

"

1

:=

f

U

\

Y

j

U

2

g

&"0,

!*

Y .

2

background image

1.16.

%#

1

&".

1.17.

%# (

X

X

) | ' &. -" &"

Y

X &:

1)

X

&

X

, 7

1

,

2)

X

& "'

Y

Y

, &

Y

.

3#, '

1

=

Y

.

1.18.

%

Y

X

(!)

%,

Y = X.

1.19.

%#

Y

1

X Y

2

X | & &. -"

Y = Y

1

\

Y

2

| & &.

1.20.

,

f : X

!

Y &"'. & -

x

0

2

X, 0 V (f(x

0

))

#

U(x

0

), '

f(U(x

0

))

V (f(x

0

)). ,, -

& 0 ',

.

1.21.

-%!.

%

/%:

1)

f : X

!

Y

"

2)

!%

%#

V

Y

#

f

;

1

(

V )

X

"

3)

!%

%#

F

Y

#

f

;

1

(

F)

X

.

.

%#

f

;

1

(

Y

n

V ) = f

;

1

(

Y )

n

f

;

1

(

V ) = X

n

f

;

1

(

V ),

2 35.

%# &#

f &, V

Y | . -" &-

V &, , , , ' x: f(x)

2

V .

-" & & 0 0 ' 0 #

U(x),

'

f(U(x))

V , . . U(x)

f

;

1

(

V ). - , ' f

;

1

(

V ) |

.

,, &# & 2. -"

V = V (f(x

0

)) ' -

"

U # U = f

;

1

(

V ).

2

1.22.

%#

X = F

1

F

2

, "

F

1

F

2

| ,

f : X

!

Y . -" f

& " # ", "

f

j

F

1

:

F

1

!

Y f

j

F

2

:

F

2

!

Y &.

1.23.

%#

f

n

:

X

!

R

| & 87, .

f -

X. -" f &.

1.24.

%#

X Y | ' &. 3#, ' f :

X

!

Y & ' x

0

0 . &"'-

. & " # ", " 0 &#

f

x

n

g

lim

n

!1

x

n

=

x

0

lim

n

!1

f(x

n

) =

f(x

0

).

1.25.

,

f : X

!

Y

4,

1)

f | 7

2)

f f

;

1

&.

3

background image

1.26.

% & " &" , -

" "8.

1.27.

5

%

. -

B

, '

{ & . 9.

1.28.

: # &# &-

B

1

, ' # . &#. 90 &'# -

&" ?

1.29.

%# (

X

X

) (

Y

Y

) | &"' &. <-

X

Y &":

B

:=

f

V

W

j

V

2

X

W

2

Y

g

:

%' &"' &

!

!

X Y .

1.30.

%# ( &# &0 '), '

X

Y 0-

# &"' &.

1.31.

3#, '

X

Y Y

X "8.

1.32.

3#, ' (

X

Y )

Z X

(

Y

Z) "8.

1.33.

%# (

X

X

) (

Y

Y

) | ' &. ,&

X

Y :

max

((

x

1

y

1

)

(x

2

y

2

)) := max

f

X

(

x

1

x

2

)

Y

(

y

1

y

2

)

g

2

((

x

1

y

1

)

(x

2

y

2

)) :=

q

2X

(

x

1

x

2

) +

2Y

(

y

1

y

2

)

+

((

x

1

y

1

)

(x

2

y

2

)) :=

X

(

x

1

x

2

) +

Y

(

y

1

y

2

)

:

3#:

1) = 5 .

2) = &"

X

Y &.

1.34.

3#, ' & &0 (

ab), ab) ab] "-

8.

1.35.

-&"' &

X

,

& . (', 5.) 0:

%

X & 9 . &.

&. . .

%

X & & A, & X -

.

%

X & 9 . &.

&. . . .

/ & '

X

.

1.36.

%

X

%

,

-

. . '

x

0

x

1

2

X & (

)

f : 01]

!

X, f(0) = x

0

,

f(1) = x

1

.

1.37.

,

ab]

R

0 .

4

background image

1.38.

X =

S

X

,

'!

X

,

T

X

6

=

.

!

X

.

.

%#

X , X = A

B, A

\

B =

,

A B | &

-. -"

X

= (

X

\

A)

(

X

\

B). % &

70 &" 5 -

X

. %#

X

, . &. 1',

X

7

A, B, &. % 5, A B &, X

9

X

, . &

X

A

B. 1',

T

X

=

. %'.

2

1.39.

%

X

!%

%#&

!&

x

y

!

P

xy

,

&

!'..

!

X

.

.

%#

X , X = A

B, A

\

B =

,

A B | &

-. -" 0

a

2

A, b

2

B P

ab

. -"

P

ab

= (

P

ab

\

A)

(

P

ab

\

B). ? - P

ab

& (&

a, | b). %' # P

ab

.

2

1.40.

, " & & & -

.

1.41.

6

.

.

% &0 '

f(01]) , " f = f

x

0

x

1

| &-

00 . %

P

x

0

x

1

:=

f(01]), &##

0 1.39.

2

1.42.

% & ", 0 " &.

1.43.

-&"' &

&!4,

.

xy

2

X, x

6

=

y, 0 U(x) U(y), '

U(x)

\

U(y) =

.

1.44.

% & .8 &"'" &.

1.45.

3#, ' & .8. &

.8.

1.46.

3#, ' .8 & ' -

.

1.47.

-&"' &

X

%,

.8 . . &. .

F

1

F

2

&

U

1

F

1

U

2

F

2

.

1.48.

/ ' & #.

1.49.

%

f

V

g

2

B

%

( , ')

f

U

g

2

A

, "

0 = (), ' V

U

.

1.50.

X

|

%

%

,

f

U

i

g

Ni=1

|

.

!

.

#%

%

!

V

i

,

V

i

U

i

.

5

background image

.

<

F

1

=

X

n

N

i=2

U

i

!

U

1

e

F

1

=

X

n

U

1

#

V

1

F

1

e

V

1

e

F

1

V

1

\

e

V

1

=

:

-"

V

1

\

e

F

1

=

V

1

V

1

(

X

n

e

F

1

) =

U

1

(

V

1

U

2

:::U

N

) | &. 3,

U

2

V

2

. .

2

1.51.

%#

f : X

!

X | & .8 &-

. 3#, ' &. '

F

f

:=

f

x

2

X

j

f(x) = x

g

.

1.52.

3#, '

X .8 " # ", " "#

B :=

f

(

xy)

j

x = y

g

X

X X

X.

1.53.

:

#

1.54.

(%

& )

X

|

%

%

,

F

0

F

1

|

.

'.

!

.

4*

f : X

!

0

1]

,

f

j

F

0

= 0

,

f

j

F

1

= 1

.

.

C # , ' " "

F "

U, F

U 0 " # V , , ' F

V

V

U,

' '#

V

U.

,&

V

q

'-7#.

q 70 & &

(. . ' 0 1, & 1/2, & 1/4 3/4, & 1/8, 3/8,

5/8, 7/8 ). %

V

0

V

1

&

,

F

0

F

1

, & & #-

. %#, & && 7,

V

q

& 2

k

q.

<

F := V

i

2

k

U := V

i

+1

2

k

" &

V

2

i

+1

2

k

+1

:=

V , 8" F U '

#.

%'

V

q

& &, &'

1)

F

0

V

0

,

2)

V

1

(

X

n

F

1

),

3 )

q

1

< q

2

,

V

q

1

V

q

2

.

,& "

s

2

0

1]: V

s

:=

S

q

s

V

q

. -"

V

s

"

s (

9 .) 1 { 3 . 30#, 1 2 ',

3 ", ' ' 0 '-

7#..

6

background image

-&# & 87

f : X

!

0

1], & f

j

F

0

= 0

f(x) := sup

f

s

j

x

62

V

s

g

. %, '

f &. %# x

0

" > 0 &#. %# s

0

=

f(x

0

).

<

U(x

0

) :=

V

s

0

+

"

4

n

V

s

0

;

"

4

:

? 0# #

x

0

, &' "

x

2

U(x

0

)

x

2

V

s

0

+

"

4

x

62

V

s

0

;

"

4

'

s

0

;

"

4

f(x)

s

0

+ "4

j

f(x)

;

f(x

0

)

j

"

2 < ":

2

1.55.

1 & " &

9 &.

1.56.

(- -7 &) %#

X | # &"-

' &,

f : F

!

R

| & 87. -"

f &

&0 87

g : X

!

R

. +

f "', g #

"'0 0 0.

1.57.

7%

4*

f : X

!

R

supp

f :=

f

x

2

X

j

f(x)

6

= 0

g

:

1.58.

X

|

%

%

,

f

U

g

|

.

!

.

4*

:

X

!

0

1]

R,

1)

supp

U

,

2)

P

(

x)

1

.

-

4*

,

f

U

g.

1.59.

3' #0 '

f

U

g

: 0 ' -

#, & H# ' '

f

U

g

.

.

2" 1.50 0 &

W

V

U

.

% J & 87

:

X

!

0

1]

j

W

1

j

(

X

k

)

0

:

- , supp

V

U

,

j

W

> 0. % :=

P

. ? '

&. 870 , , & 87. %#

f

W

g

| &,

> 0 W

,

> 0. 1', &#

:=

. ,', ' &.

2

1.60.

-&"' &

X

,

" " " & # ' &&.

1.61.

3#, '

ab] &.

1.62.

3#, ' & &" &

&.

1.63.

3#, ' & & .8 &-

.

7

background image

1.64.

8

&!4

%.

.

%#

F

X x

62

F. %, '

&

U(x) V (F). / .8 " y

2

F 0 V

y

U

y

, '

V

y

\

U

y

=

. ,

V

y

&

F,

" # ' &&

V

y

1

:::V

y

N

,

F &

(. ' 1.62). %

V (F) := V

y

1

:::

V

y

N

U(x) :=

N

\

j=1

U

y

j

:

%# &#

F

1

X F

2

X | . % &0 ' #

& "

x

2

F

1

&

U(x)

x

V (x)

F

2

. -"

f

U(x)

g

| &

F

1

, " #

' &&

U(x

1

)

:::U(x

n

). (

n

S

i=1

U(x

i

)

n

T

i=1

V (x

i

) |

&

F

1

F

2

.

2

1.65.

3#, ' &0 & &.

1.66.

%#

f : X

!

R

1

| & 87 & &-

X. -" f "' & #H #H '.

1.67.

%#

X | ' &, "

5:

1)

X &

2) &##

f

x

n

g

X . &&#-

#

3) &## . &. .

f

F

n

g

(. .

F

n

F

n+1

) & &'.

1.68.

3 & &. & -

&.

2.

2.1.

9%!

#

&# .8

&"' &

M,

%!

%,

. . &-

f

U

g

"8

'

, .

U

&-

V

R

m

(

m # dimM " M). , -

U

%%

!

. % 5 , '

!

'

'

;

1

:

'

(

U

\

U

)

!

'

(

U

\

U

) " {87,

R

m

.

9%!

-

#0 "0 .

2.2.

+ # ", "

-

%.

8

background image

2.3.

% & " " " -

, . . " (

U

i

'

i

) (

V

j

j

), '

f

(

U

i

'

i

)

(V

j

j

)

g

" .

2.4.

3#, '

S

n

R

P

n

" ".

2.5.

K " " "7 #

(&

R

2

) ?

2.6.

2

n- "

%-%-

,

87 &-'.

2.7.

3#, '

S

2

| &-' ".

2.8.

L7

f : M

!

R

%!,

0

'

P

2

M 0 (U

'

), 0

P, 87 f

'

;

1

:

V

!

R

,

R

m

, "0.

2.9.

3#, ' " & H 0

"# & H 0.

2.10.

M&

f : M

!

N ". "-

0

%!,

0 '

P

2

M . (U

'

),

0

P, (U

0

'

0

), 0

f(P), (5 M N, )

'

0

f

'

;

1

:

V

!

V

0

R

n

,

R

m

%%

!%

!

f, ". 1#

dim

M = m dimN = n.

2.11.

3#, ' " & H 0 &

"# & H 0.

2.12.

K "

f : M

!

N ". "-

0

!444,

f

;

1

".

2.13.

%#, ' 8

y

k

=

x

k

q

"

2

;

(

x

1

)

2

;

(

x

2

)

2

;

:::

;

(

x

n

)

2

k = 1:::n

x

k

=

y

k

q

"

2

+ (

y

1

)

2

+ (

y

2

)

2

+

::: + (y

n

)

2

k = 1:::n

888

B

"

(0)

R

n

R

n

.

2.14.

% & "" "8, " 8-

88.

#

2.15.

7

%#

%!

#

M

.

%

,

!444

:

(

!

!

2.13

R

m

:)

.

%# (

U

'

) | 0

M. 3 0 x

2

M

U

(x)

3

x. %# "(x) # , ' B

"(x)

(

'

(x)

(

x))

V

(x)

R

m

. -"

(

e

U

x

e

'

x

)

x

2

M

e

U

x

:=

'

;

1

(x)

(

B

"(x)

(

'

(x)

(

x)))

e

'

x

:=

'

(x)

j

e

U

x

| 0 .

2

2.16.

3 " '" &" " -

&' 7, &# #.

9

background image

2.17.

%

%#

%

#

M

.-

!

%!

#

!*.

.

% " , ' ' &#

7 " #' ." . / ' " #'-

(0 2.15 1.50) 0 (

W

),

'

(

W

) =

B

1

(0)

R

m

W

"

:=

;

1

(

B

1

;

"

(0)) | &

M:

,& " 87

R

m

:

h(x) :=

(

e

;

1

(k

x

k;(1;

"=

2)

2

)

2

&

k

x

k

< (1

;

"=2)

2

,

0

&

k

x

k

(1

;

"=2)

2

.

-"

supp

h

B

1

;

"=2

(0)

0

h(x)

1

h(x) > 0 B

1

;

"

(0)

:

%

:=

(

h(

(

x)) & x

2

W

,

0

&

x

62

W

.

-"

2

C

1

(

M), 0

1, supp

W

> 0 W

"

. 1',

:=

P

> 0,

:=

= | C

1

- 7.

2

2.18.

f :

R

n

!

R

|

%!

4*,

grad

f

6

= 0

M = f

;

1

(

y

0

)

.

!

M

|

%!

#.

/

%%-

&

!

'

n

;

1

x

1

:::x

n

.

.

% 0 87. C, &#

~x

0

= (

x

1

0

:::x

n

0

)

2

M

grad

~x

0

=

@f

@x

1

::: @f

@x

n

!

~x

0

6

= ~0

:

K "' '#, '

@f

@x

n

~x

0

6

= 0. % 0

87 0 #

V ' (x

10

:::x

n

;

1

0

)

R

n

;

1

, (

x

n0

;

"x

n0

+

")

2

R

1

C

1

-87

g : V

!

R

1

, '

1)

f(x

1

:::x

n

;

1

g(x

1

:::x

n

;

1

))

0

V ,

2)

g(x

10

:::x

n

;

1

0

) =

x

n0

,

3)

g(x

1

:::x

n

;

1

)

2

(

x

n0

;

"x

n0

+

") & (x

1

:::x

n

;

1

)

2

V ,

4) ' (

x

1

:::x

n

)

2

M

\

(

V

(

x

n0

;

"x

n0

+

"))

x

n

=

g(x

1

:::x

n

;

1

).

10

background image

,& :

U := M

\

(

V

(

x

n

0

;

"x

n

0

+

")) ' : U

!

R

n

;

1

'(x

1

:::x

n

) := (

x

1

:::x

n

;

1

)

2

V:

-", & 1) 3 )

'

'

;

1

(

x

1

:::x

n

;

1

) = (

x

1

:::x

n

;

1

g(x

1

:::x

n

;

1

))

:

%, ' &'0 ". %#, "' -

, (

U') ' ~x

0

(

e

U

e

'), "

e

' : (x

1

:::x

n

)

7!

(

x

2

:::x

n

). -"

V

\

e

V

e

''

;

1

(

x

1

:::x

n

;

1

) =

e

'(x

1

:::x

n

;

1

g(x

1

:::x

n

;

1

)) = (

x

2

:::x

n

;

1

g(x

1

:::x

n

;

1

))

| " .

2

2.19.

(

'

)

8-

%

' P

2

M " M ,

0 (

U

'

) (#0 (

x

1

:::x

n

)) -

P ' (

1

:::

m

). % 5 & -

0 , 0 ',

#. . C, (

U

'

) (#0 -

(

x

1

:::x

n

)) ' (

1

:::

m

),

i

= @x

i

@x

j

j

" & & .

j & .

2.20.

(& &) %#

: (

;

11)

!

M | " -

. -"

: (

x

1

:::x

n

)

dx

1

dt :::

dx

n

dt

!

t=0

. 1# #0 (

x

1

:::x

n

)

(x

1

(

t):::x

n

(

t)).

2.21.

:0 #0 '

P ' &

& # 0 .

- , # &

T

P

(

M) ' -

0 & dim

M. % 5, ',

&7 #0 .

2.22.

(

'

&)

< "

1

: (

;

1

1)

!

M

2

: (

;

1

1)

!

M, -

:

i

(0) =

P

0 (#, 0) (

x

1

:::x

m

)

P & :

m

X

k=1

h

x

k

(

1

(

t))

;

x

k

(

2

(

t))

i

2

=

o(t

2

)

(

t

!

0)

:

11

background image

-

.

:

1

2

.

/ , & , &-

.. ?

%

M ' P.

2.23.

(

'

((

-

*

+)

N0

D : C

1

(

M)

!

R

, . . 00 87

& ". 870,

!44*

'

P

2

M,

' " & # ' 870

P, '-

,

fg

2

C

1

(

M) , ' f

g 0 U '

P, D(f) = D(g) (\& . 870")

& M#{N07

D(fg) = f(P)D(g) + g(P)D(f) . fg

2

C

1

(

M):

M 0 & 887

%

M '

P.

2.24.

%# (

x

1

:::x

n

) | #

P

2

M, P = (x

10

:::x

n0

),

2

T

P

M

i

. -"

f

7!

n

X

i=1

@f

@x

i

(

x

1

0

:::x

n

0

)

i

#0 & & 88-

7.

2.25.

)!%

/%,

,

$

%

!

!

$

$

!44*

%

'!

4

%&

%

&

-

!%.

.

( 5# &. .. / ' 2.20

' ( 0 ) &# '

1

2

, '

1

=

2

.

0 = lim

t

!

0

m

X

k=1

"

x

k

(

1

(

t))

;

x

k

(

2

(

t))

t

#

2

=

=

m

X

k=1

"

lim

t

!

0

(

x

k

(

1

(

t))

;

x

k

(

P))

;

(

x

k

(

2

(

t))

;

x

k

(

P))

t

#

2

1

=

2

.

2.26.

%#

f : M

!

N | " , P

2

M.

4-

4*%

(%

#')

f ' P

12

background image

#. &

df

P

:

T

P

M

!

T

f(P)

N, & .

5. &, . & #" -

.

!&,

-.

%# (

U

M

'

M

:

U

M

!

V

M

R

m

) |

M -

P, (U

N

'

N

:

U

N

!

V

N

R

n

) |

N f(P), (x

1

:::x

m

)

(

y

1

:::y

n

) | # . N# &-

f, ', '

N

f

(

'

M

)

;

1

:

V

M

!

V

N

, #

& 870

y

1

=

f

1

(

x

1

:::x

m

)

:::y

n

=

f

n

(

x

1

:::x

m

)

:

%#

2

T

P

M (x

1

:::x

m

) -

(

1

:::

m

) (": 50 ), " &

& &" "

= (df

P

)

j

= @f

j

@x

i

i

( &) (

y

1

:::y

n

).

.

,

-.

,' '

] &. . 0 .

%

(

df

P

)

] := f

]:

,

-.

< & 887

' P

2

M.

-" ' & 887 (

df

P

)

87 g

2

C

1

(

N) -

80

((

df

P

)

)(g) := (g

f):

2.27.

3# 5# . &0 887.

2.28.

< "

f : M

!

N, f(P

0

) =

Q

0

.

-'

P

0

2

M

%

f, 887

df

P

0

:

T

P

0

M

!

T

Q

0

N

5&8 ( \"). -'

Q

0

2

N

%-

f, P

2

f

;

1

Q

0

"0 '0

f.

2.29.

f : M

!

N

,

Q

0

2

N

|

%

f

.

!

M

Q

0

:=

f

;

1

(

Q

0

)

%

%!

#,

dim

M

Q

0

= dim

M

;

dim

N

.

%%&

!

M

Q

0

'

(

m

;

n)

!

M

.

.

% 0 87.

2

2.30.

,

f : M

!

N

',

0 '

P

2

M 887 df

P

:

T

P

M

!

T

f(P)

N 8.

+ & 5

f : M

$

f(M) ', f(M) N, f(M)

%'.

13

background image

2.31.

% & &", -'" ,

" .

2.32.

/, "8 ,

%'

%

%.

2.33.

3 &. "0 " #.

2.34.

%

L

M dimM = m,

%!

!-

#,

0 (

U

'

) "

M, '

f

U

\

L

g

| "0

L , '

'

j

U

\

L

:

U

\

L

!

V

\

R

l

R

l

R

m

:

?

%.

- , dim

L = l, (m

;

l)

.

= 7 #

L.

2.35.

% & " , ' &-

" ( ").

2.36.

!'

A

N

%

!#

!

%

!,

!

%

#

#

M

%'

%

%.

.

+

A

N &",

"8 , & & &"

| &".

,, &#

f : M

!

N | # " . 20 # &-

" #0 .: ' # &-

f

N

i

g

N A, A

i

=

A

\

N

i

. ? 0 #

C

1

-

888:

A

N &" " #

", "

g(A)

N

0

&", "

g : N

!

N

0

| 88-

8. < 0 R =

f

i

:

N

i

!

R

n

g

"

N, &-

.

A. %# S =

f

'

i

:

M

i

!

R

m

g

i

2

| 0

M, ' f

i

(

M

i

)

N

i

(

, 7). %#

f , ', "-

8 , # S R , '

f(M

i

) =

A

\

N

i

. -"

# 888 7 0.

U :=

f

V

i

g

=

'

i

(

M

i

)

R

m

,

f = f

i

=

i

f'

;

1

i

:

U ,

!

R

n

|

C

1

-. -

#, '

f(U) | &". M 5 & 0 8-

7. C, # (

x

i

1

:::x

i

m

), 1

i

1

:::

i

m

n, "

g :

R

mx

!

R

n

;

m

x

, ' 5 "8. - ,

R

n

(

x

i

1

:::x

i

m

x

j

1

;

(

g(x

i

1

:::x

i

m

))

j

1

:::x

j

n

;

m

;

(

g(x

i

1

:::x

i

m

)))

&', '

f(U) "&&#. %'-

, ' # ' # # " , ' #-

.

2

2.37.

( &- H# & '# (0

1)

f

0

g

R

2

&". %# '#.

14

background image

2.38.

(#

/)

(#

!%)

f : M

!

N

|

%!-

#',

M

N

|

#.

!

'

G

N

%&

f

|

!

%

'.

2.39.

M& &" &

.8 "8.

2.40.

(/-

+

%

)

M

|

%!

-

#.

!

!

%

%

p

,

.

%'

(

%

%)

f : M

!

R

p

.

.

%#

f

U

g

L=1

| '0

M, (x

1

:::x

m

) | #

U

, &'

'

:

U

B

=

B

1

(

a

)

R

m

, "

B

r

(

b) | H

r 7 b. %# B

"

:=

B

1

;

"

(

a

), &'

f

U

"

:=

'

;

1

(

B

"

)

g

&-&

&

M ( #). / &#

f

2

C

1

(

R

m

)

f

1

B

"

supp

f

B

:

%#

g

k

:

M

!

R

&

k = 1:::m = 1:::L 8

g

k

(

P) :=

(

f

(

'

(

P))x

k

&

P

2

U

0

&

P

62

U

.

% 5 &

g

k

(

P) = x

k

(

P) & P

2

U

"

. - ,

m

L 870

g

k

C

1

-

g : M

!

R

m

L

:

,& &#

' : M

!

R

N

=

R

m

L+L

'(P) := ( g(P)

|

{z

}

m

L

f

(

'

(

P))

|

{z

}

L

)

:

-" rk

'

rk

g. + P

2

U

"

,

rk

g

j

P

rk

@g

k

(

P)

@x

j

!

rk

@x

k

(

P)

@x

j

!

=

m:

%# & rk

'

m, rk'

m. ( &, '

' | &".

-&# , '

' 9, . . 70 . %#

P

6

=

Q. -" 0 0 , ' P

2

U

"

, #,

f

(

'

(

P)) = 1.

+ & 5

f

(

'

(

Q)) < 1, , f

(

'

(

Q)) = 1, Q

2

U

,

'

g

k

(

P) = x

k

(

P), g

k

(

Q) = x

k

(

Q). %# P

6

=

Q, 0

x

k

0

(

P)

6

=

x

k

0

(

Q), ' g

k

0

(

P)

6

=

g

k

0

(

Q) '(P)

6

=

'(Q).

-

M &, '(M)

R

N

.8, & ' 2.39

'

"8 , #, # .

2

2.41.

(/

+

%

)

(#

!%)

!!.

'

p = 2

dim

M + 1

.

.

C # , ' "-

, & & 0 && #H0 -

, &# #. 2 && 0 &

2.

2

15

background image

3.

3.1.

%# dim

M = m. ,& N = T

M {

#

%-

&

/%

%

%

M. N &

(

P), " P

2

M,

2

T

P

M, . . #0 . -&"

" & & . 0 . &-

N &

R

2

m

, 9 "8

( ' dim

N = 2m). C, (U') { # M,

' " &

N & (P) P

2

U,

'

R

2

m

S:

S(

P) = (x

1

:::x

m

1

:::

m

)

"

'(P) = (x

1

:::x

m

)

=

1

@

@x

1

+

::: +

m

@

@x

m

. .

#0 & (x

1

:::x

m

)

i

. -" &. & &. 0 0 "0 -

& &0 "&& &. ,

M, & 0 { &

& 7 T &0 "&&. / ', ".

3.2.

+

M " " C

k

,

T

M | "-

C

k

;

1

.

4.

/ ':

R

n

+

R

n

R

n

+

:=

f

(

x

1

:::x

n

)

2

R

n

j

x

n

0

g

R

n

;

1

0

:=

f

(

x

1

:::x

n

)

2

R

n

j

x

n

= 0

g

:

% 887# &0 87

f :

R

n

+

!

R

1

&-

# . 3 . ' (

x

n

> 0) . ' &. 3

"'. ' (

~x

0

2

R

n

;

1

0

) # &

f(~x) = f(~x

0

) +

n

X

i=1

f

i

(

x

i

;

x

i

0

) +

o(~x

;

~x

0

)

lim

~x

!

~x

0

xn

0

o(~x

;

~x

0

)

k

~x

;

~x

0

k

= 0

:

-"

f

i

=

@f

@x

i

(

~x

0

)

(i = 12:::n

;

1),

f

n

= lim

h

!

+0

f(x

10

:::x

n

;

1

0

x

n0

+

h)

;

f(x

10

:::x

n

;

1

0

x

n0

)

h

(1)

( ' &).

4.1.

2&# .8 &"' &

M

#

,

" &

16

background image

f

U

g

"8

'

:

U

!

V

R

n

+

, "

V

R

n

+

| -

, 87

'

'

;

1

:

V

=

'

a

(

U

\

U

)

!

V

=

'

b

(

U

\

U

)

" .

M '

P

2

M

,

x

n

(

P) > 0

,

x

n

(

P) = 0.

#

4.2.

)!%

&

&

#

%%

!.

.

3& &:

P

2

M 7

# (

x

1

:::x

n

) (

y

1

:::y

n

)

R

n

+

x

R

n

+

y

, &'

x

n

(

P) > 0, y

n

(

P) = 0. - , (x

1

:::x

n

) "-

8

U

3

P V

R

nx

, (

y

1

:::y

n

) | ~

V

R

n

+

y

(&. &', ' "8 0 -

). / 87 &., . . "0 "8

' : V

!

~V,

y

k

=

'

k

(

x

1

:::x

n

), &'

1)

y

n

=

'

n

(

x

1

:::x

n

)

0,

2)

y

n

(

P) = '

n

(

x

10

:::x

n0

) = 0,

. .

y

n

=

'

n

' (

x

10

:::x

n0

). -

V

R

n

+

x

,

(

x

10

:::x

n0

) | , # & #" 5:

@'

n

@x

i

(

x

1

0

:::x

n

0

)

= 0

(

i = 1:::n):

M " det

@'

n

@x

i

(

x

1

0

:::x

n

0

)

= 0 "" ", &#

& 0 '0 &0 (1) & # &

887 ( 7 T).

2

4.3.

M

*

@M " M

" "'. '.

4.4.

8

%

#

!*

:

.

.

/ ' # "' 0.

2

4.5.

%# & . 0.

4.6.

8

@M

#

M

%

-

#.

.

%#

f

U

(x

1

:::x

n

)

g

M (x

n

0) -

, det

@x

i

@x

j

n
ij=1

> 0. M @M # W

=

U

\

@M #

(

x

1

:::x

n

;

1

). %, ' , . .

17

background image

0

P

2

W

\

W

& det

@x

i

@x

j

n

;

1

ij=1

> 0. %# W

\

W

x

n

=

x

n

0,

@x

n

@x

i

0,

i = 1:::n

;

1. - , '

P

0

< det

@x

i

@x

j

n

ij=1

= det

@x

i

@x

j

n

;

1

ij=1

@x

n

@x

n

:

(2)

/ '

P

@x

n

@x

n

= lim

h

!

+0

x

n

(

x

1

(

P):::x

n

(

P) + h)

;

x

n

(

x

1

(

P):::x

n

(

P))

h

=

= lim

h

!

+0

x

n

(

x

1

(

P):::x

n

(

P) + h)

h

:

%# &# &#, & 7, &-

#, (2), 0, &:

@x

n

@x

n

P

> 0. -" (2)

&', ' det

@x

i

@x

j

n

;

1

ij=1

> 0.

2

!

4.7.

, : ( , 0

S

1

.

5.

5.1.

"

M -

g, 0 #0 (x

1

:::x

m

)

U

&-

". 870

g

ij

:

U

!

R

, &'

1) 0 '

x

2

U 7

k

g

ij

k

| ' () &-

# &

2) & 0 : 87

g

kl

, '

(

x

1

:::x

m

), 0 ' &' .

0

g

kl

=

g

ij

@x

i

@x

k

@x

j

@x

l

(& & | ).

% (

Mg)

#.

5.2.

% ' &# 0 '

P

2

M

# 0 .

5.3.

% "-

H '.. ( '# # (

U'),

(

U

0

'

0

), (

U

00

'

00

) . ., | (

x

1

:::x

m

), (

x

1

0

:::x

m

0

),

(

x

1

00

:::x

m

00

) . . - , #, '

x

i

0

5

x

0

i

0

.

18

background image

: ", & , & . , &#

. / 5. '. & -

0 & :

i

0

=

i

@x

i

0

@x

i

g

i

0

j

0

=

g

ij

@x

i

@x

i

0

@x

j

@x

j

0

:

#

5.4.

!

%

!

%&

-

~~

2

T

P

M

4%

h

~~

i

:=

g(~~) := g

ij

i

j

:

.

/ :

g

ij

i

j

=

g

i

0

j

0

i

0

j

0

,

& & & & 0 & &-

#" .

2

5.5.

% 5 .

5.6.

5%

4

1).

5.7.

%#

f : N

!

M | " , g | 0

8 (#. . )

M. ,& '

#

#

f

g . ~~

2

T

P

N 80

(

f

g)(~~) := g((df

P

)~

(df

P

)

~):

/ . &# 0 &. %#

(

x

1

:::x

n

) |

P, (y

1

:::y

m

) |

f(P),

(

f

1

(

x

1

:::x

n

)

:::f

m

(

x

1

:::x

n

)) | &#

f. --

" ( . (

x

1

:::x

n

))

(

f

g)

ij

:=

g

kl

@f

k

@x

i

@f

l

@x

j

:

5.8.

%# "# 5. . &0.

5.9.

3#, '

i : N

!

M | &" ( ', ),

g | M, i

g | N. %' 5

&#" ?

5.10.

%#

i : N ,

!

M | ' &" N -

" (

Mg). -" i

g

!*

0 -

0 &"

N.

5.11.

7

#

M

.

-

.

.

%#

F : M

!

R

p

| J. -"

F

g

R

p

|

M.

2

5.12.

3# 5 &# 7 (

J).

19

background image

6.

!

:

#

6.1.

%

& (

pq) " p + q " M

n , & 0 -

(

x) = (x

1

:::x

n

)

n

p+q

". 870

T

i

1

:::i

p

j

1

:::j

q

, .

-

,

&' . (

x) (x

0

) ( 0 #) -

&

T

i

0

1

:::i

0

p

j

0

1

:::j

0

q

=

T

i

1

:::i

p

j

1

:::j

q

@x

i

0

1

@x

i

1

::: @x

i

0

p

@x

i

p

@x

j

1

@x

j

0

1

::: @x

j

q

@x

j

0

q

:

6.2.

%#, ' & (1

1), 0 # -

"#. , &&7

ij

.

6.3.

%#, ' #0 , 0 -

# &#. , .

6.4.

M0 0 '0 , "

# &#0 .

6.5.

/# 7 # . &70.

6.6.

/# 7 # . &-

70.

6.7.

3# &# . 8 & ' -

& 7:

det(

AB) = detA

det

B:

6.8.

/# 5887 "' det(

A

;

E) #

. &70 .

6.9.

3#, ' '

C

ii

,

C

ij

C

j

i

,

C

ij

C

j

k

C

ki

, ' 58-

87 "' det(

C

;

E) .

6.10.

M0 # , & " # 5887-

1) " &,
2) H" &

R

3

. %#, ' 5 &' " " & &-

& .

6.11.

%#

X # (10), W { (01). M0 " &

X

W.

6.12.

- & & (0

1)

.

2" ' H

dx

i

= grad

x

i

.

6.13.

/ ' 87 ..

6.14.

K

f

@

@x

i

g

T

P

M

f

dx

j

g

T

P

M 0.

<

C

1

(

M)-0 L(v

1

:::v

q

a

1

:::a

p

)

q

.

p . &0, & ' C

1

(

M). <

T

7!

L

T

L

T

(

v

1

:::v

q

a

1

:::a

p

) :=

T

i

1

:::i

p

j

1

:::j

q

v

j

1

1

:::v

j

q

q

a

1
i

1

:::a

p

i

p

20

background image

L

7!

T

L

T

L

: (

x

1

:::x

n

)

(

T

L

)

i

1

:::i

p

j

1

:::j

q

:=

L( @

@x

j

1

::: @

@x

j

q

dx

i

1

:::dx

i

p

)

:

6.15.

1)

L

T

& .

2)

T

L

0# (

pq)- .

3) ? .

6.16.

%# . & & (

pq): T S. ,&

&

T + S,

T S, &"

(

T + S)

i

1

:::i

p

j

1

:::j

q

:=

T

i

1

:::i

p

j

1

:::j

q

+

S

i

1

:::i

p

j

1

:::j

q

:

#

6.17.

;

!%

(

pq)

.

.

1

#.

M &# 0 .

6.18.

%0 .

2

#.

2 . &0. 0

L

T

+

L

S

&0-

" &,

L

T+S

.

2

6.19.

+

T

i

1

:::i

p

j

1

:::j

q

| &

M, f

2

C

1

(

M), ,

', &

!

87

f

T :

(

x

1

:::x

n

)

f

T

i

1

:::i

p

j

1

:::j

q

.

6.20.

%

S & (pq) &' & T & (pq)

-

&&

(. | "')

!

a b, S

i

1

:::i

a

:::i

b

:::i

p

j

1

:::j

q

=

T

i

1

:::i

b

:::i

a

:::i

p

j

1

:::j

q

.

3# ", ' &' &, ', -

&0 .

6.21.

%# &, ' & ." "

0 &70. <# '0 & (1

1) (0-

" &). %'# ', ' & ' &

C

ij

=

C

j

i

.

6.22.

-

T & (pq) & . -

a b S & (p

;

1

q

;

1),

&0

S

i

1

:::i

p

;1

j

1

:::j

q

;1

:=

X

i

T

i

1

:::i

a

;1

ii

a

:::i

p

;1

j

1

:::j

b

;1

ij

b

:::j

q

;1

:

? 0# & & (

p

;

1

q

;

1), &#

L

S

(

v

1

:::v

q

;

1

a

1

:::a

p

;

1

) =

=

X

i

L

T

(

v

1

:::v

a

;

1

@

@x

i

v

a

:::v

q

;

1

a

1

:::a

b

dx

i

a

b+1

:::a

p

;

1

)

21

background image

X

i

@x

i

0

@x

i

@x

i

@x

i

0

= 1

' & '# .

!

6.23.

2

C

ii

& (1

1) | 0" &.

6.24.

!

T

S . . &0 T &

(

pq) S & (rt) & & (p+rq+t), 80

(

T

S)

i

1

:::i

p

+

r

j

1

:::j

q

+

t

:=

T

i

1

:::i

p

j

1

:::j

q

S

i

p

+1

:::i

p

+

r

j

q

+1

:::j

q

+

t

:

2

L

T

S

# & & &0. 0,

# | &0 . ". -

,

T

S 0# &.

6.25.

%#

b

ij

| & & (0

2). %

# & det

k

b

ij

k

6

= 0.

6.26.

%# # 5" -

.

6.27.

3#, ' & 0 7

b

jk

, . . -

0

b

jk

b

ki

=

j

i

, & (2

0).

6.28.

,&7

!

!

T & (pq) & &-

b # &7 &70 " & b

ij

. %-

'

S & (p + 1q

;

1) M&, &" :

S

i

1

:::i

p

+1

j

1

:::j

q

;1

:=

b

i

1

i

T

i

2

:::i

p

+1

ij

1

:::j

q

;1

:

V"', & :

S

i

1

:::i

p

;1

j

1

:::j

q

+1

:=

b

j

1

i

T

ii

1

:::i

p

;1

j

2

:::j

q

+1

:

6.29.

,&

" &

T & (0q)

Sym(

T)

j

1

:::j

q

=

T

(

j

1

:::j

q

)

= 1q!

X

2

S

q

T

j

(1)

:::j

(

q

)

%

Alt(

T)

j

1

:::j

q

=

T

j

1

:::j

q

]

= 1q!

X

2

S

q

(

;

1)

T

j

(1)

:::j

(

q

)

:

,', ' 5 &7. %' & (-

., #) &

(.,

-

) , ' . & & & . -

(., & & . . ).

6.30.

3, ' # 0 ,

& ' , '-

" .

22

background image

#

6.31.

8

%

T

i

1

:::i

n

M

,

dim

M = n

(.

.

%

%

%)

!%

%

!

(.-

)

T

12

:::n

.

)%

%

1

,

,

T

i

1

:::i

n

=

T

(12:::n)

= (

;

1)

T

12

:::n

:

-.

T

!

%

!

-

!

%

!'

!%%

*

<#

.

.

% '. 3,

T

1

0

:::n

0

=

T

i

1

:::i

n

@x

i

1

@x

1

0

::: @x

i

n

@x

n

0

=

X

(

;

1)

@x

(1)

@x

1

0

::: @x

(n)

@x

n

0

!

T

i

1

:::i

n

= det

@x

i

@x

i

0

T

12

:::n

:

N .

2

6.32.

,&

:

!

R = T

^

P . -

'.

T

i

1

:::i

k

P

i

1

:::i

q

80

R

i

1

:::i

k

+

q

=

T

i

1

:::i

k

P

i

k

+1

:::i

k

+

q

]

= 1

k!q!

X

2

S

k

+

q

(

;

1)

T

(i

1

:::i

k

P

i

k

+1

:::i

k

+

q

)

:

2 '# , 5 &7 " & #-

.

3 ' & (0

q) &#

887#. 8. -', & & H" ,

dx

i

1

^

:::

^

dx

i

q

= 1q!

X

2

S

q

(

;

1)

dx

(i

1

:::

dx

i

q

)

:

-" & &0 & :

T = T

i

1

:::i

q

dx

i

1

:::

dx

i

q

=

X

i

1

<:::<i

q

T

i

1

:::i

q

dx

i

1

^

:::

^

dx

i

q

:

? &# 887#0 8. - ,

(' &) 5 '.

6.33.

%, ' &' 8 H"

887#. 8 ' &# , , &-

& ( ' ) &'# 887.

6.34.

( 6.31) /

q

det

k

g

ij

k

dx

1

^

:::

^

dx

n

-

# &# . 1#

g

ij

| .

?

4

#$

. % & "

'# 9 ".

23

background image

7.

#%%

&

7.1.

%, ' ' ' 887 & -

" &

R

n

0 &70.

Z &# . &.

R

n

&7 (

pq)

(

pq +

1), & . . ' 887.

3 5" & " &&# &# # '" 88-

7 ". ..

, ' '0 " &

T

i

. %#

x

i

|

R

n

,

x

i

0

| 0 . -"

0 &7

r

#

(

r

T)

ij

= @T

i

@x

j

(

r

T)

i

0

j

0

= @x

i

0

@xi

@x

j

@x

j

0

(

r

T)

ij

:

-"

(

r

T)

i

0

j

0

= @x

i

0

@xi

@x

j

@x

j

0

@

@x

j

@x

i

@x

k

0

T

k

0

!

=

= @x

i

0

@xi

@x

j

@x

j

0

@x

i

@x

k

0

@T

k

0

@x

m

0

@x

m

0

@x

j

+ @x

i

0

@xi

@x

j

@x

j

0

T

k

0

@

@x

j

@x

i

@x

k

0

!

=

=

i

0

k

0

m

0

j

0

@T

k

0

@x

m

0

+

T

k

0

@x

i

0

@x

i

@

2

x

i

@x

j

0

@x

k

0

,

(

r

T)

i

0

j

0

= @T

i

0

@x

j

0

+

T

k

0

;

i

0

j

0

k

0

;

i

0

j

0

k

0

= @x

i

0

@x

i

@

2

x

i

@x

j

0

@x

k

0

:

3 " &

T

i

# (

r

T)

ij

=

@T

i

dx

j

, (

r

T)

i

0

j

0

=

@x

i

@x

i

0

@x

j

@x

j

0

(

r

T)

ij

.

-"

(

r

T)

i

0

j

0

= @x

i

@x

i

0

@x

j

@x

j

0

@

@x

j

@x

k

0

@x

i

T

k

0

!

=

= @x

i

@x

i

0

@x

j

@x

j

0

@x

k

0

@x

i

@T

k

0

@x

m

0

@x

m

0

@x

j

+ @x

i

@x

i

0

@x

j

@x

j

0

T

k

0

@

@x

j

@x

k

0

@x

i

!

=

=

k

0

i

0

m

0

j

0

@T

k

0

@x

m

0

+

T

k

0

@

2

x

k

0

@x

j

@x

i

@x

i

@x

i

0

@x

j

@x

j

0

(

r

T)

i

0

j

0

= @T

i

0

@x

j

0

+

T

k

0

\;

k

0

i

0

j

0

\;

k

0

i

0

j

0

= @

2

x

k

0

@x

j

@x

i

@x

i

@x

i

0

@x

j

@x

j

0

:

#

7.2.

=

\;

k

0

i

0

j

0

=

;

;

k

0

i

0

j

0

.

.

%887

@x

i

0

@x

i

00

@x

i

00

@x

k

0

=

i

0

k

0

&

x

m

0

:

0 = @

2

x

i

00

@x

m

0

@x

k

0

@x

i

0

@x

i

00

+ @x

i

00

@x

k

0

@

2

x

i

0

@x

m

00

@x

i

00

@x

m

00

@x

m

0

= ;

i

0

m

0

k

0

+ \;

i

0

m

0

k

0

:

2

24

background image

7.3.

7

M =

R

n

!%

*

r,

!.

%

T

i

1

:::i

p

j

1

:::j

q

4%

(

r

T)

i

0

1

:::i

0

p

j

0

1

:::j

0

q

m

0

= @

@x

m

0

(

T

i

0

1

:::i

0

p

j

0

1

:::j

0

q

) +

p

X

s=1

T

i

0

1

:::i

0

s

;1

r

0

i

0

s

+1

:::i

0

p

j

0

1

:::j

0

q

;

i

0

s

r

0

m

0

;

q

X

s=1

T

i

0

1

:::i

0

p

j

0

1

:::j

0

s

;1

r

0

j

0

s

+1

:::j

0

q

;

r

0

j

0

s

m

0

4*

;

#

%

;

i

00

j

00

k

00

= @x

i

00

@x

i

0

@x

j

0

@x

j

00

@x

k

0

@x

k

00

;

i

0

j

0

k

0

+ @x

i

00

@x

i

0

@

2

x

i

0

@x

j

00

@x

k

00

:

.

T0

r

"' -

. . &0.

7.4.

%0 5 .

M0 & ;.

r

k

0

T

i

0

:= (

r

T)

i

0

k

0

= @T

i

0

@x

k

0

+

T

r

0

;

i

0

r

0

k

0

r

k

00

T

i

00

= @T

i

00

@x

k

00

+

T

r

00

;

i

00

r

00

k

00

= @x

k

0

@x

k

00

@

@x

k

0

@x

i

00

@x

i

0

T

i

0

!

+ @x

r

00

@x

r

0

T

r

0

;

i

00

r

00

k

00

=

= @x

k

0

@x

k

00

@x

i

00

@x

i

0

@T

i

0

@x

k

0

+

T

i

0

@x

k

0

@x

k

00

@

2

x

i

00

@x

k

0

@x

i

0

+

T

r

0

@x

r

00

@x

r

0

;

i

00

r

00

k

00

:

2 "0 ,

r

k

00

T

i

00

= @x

k

0

@x

k

00

@x

i

00

@x

i

0

r

k

0

T

i

0

= @x

k

0

@x

k

00

@x

i

00

@x

i

0

@T

i

0

@x

k

0

+

T

r

0

;

i

0

r

0

k

0

!

:

%5

T

r

0

@x

k

0

@x

k

00

@x

i

00

@x

i

0

;

i

0

r

0

k

0

=

T

r

0

@x

k

0

@x

k

00

@

2

x

i

00

@x

k

0

@x

r

0

+

T

r

0

@x

r

00

@x

r

0

;

i

00

r

00

k

00

:

/ &# &

T

i

&'

;

i

00

r

00

k

00

= ;

i

0

r

0

k

0

@x

r

0

@x

r

00

@x

k

0

@x

k

00

@x

i

00

@x

i

0

;

@x

r

0

@x

r

00

@x

k

0

@x

k

00

@

2

x

i

00

@x

k

0

@x

r

0

:

: & & # 7.2,

;

@x

r

0

@x

r

00

@x

k

0

@x

k

00

@

2

x

i

00

@x

k

0

@x

r

0

= @

2

x

k

0

@x

r

00

@x

k

00

@x

i

00

@x

k

0

= @

2

x

i

0

@x

r

00

@x

k

00

@x

i

00

@x

i

0

:

2

7.5.

M " "

M

*

!44*

(

44

)

r

, 0

". 870 ;

ijk

, &. & & 8

;

i

0

j

0

k

0

= @x

i

0

@x

i

@x

j

@x

j

0

@x

k

@x

k

0

;

ijk

+ @x

i

0

@x

i

@

2

x

i

@x

j

0

@x

k

0

:

25

background image

-" 0

r

(

r

T)

i

1

:::i

p

j

1

:::j

q

m

= @

@x

m

(

T

i

1

:::i

p

j

1

:::j

q

) +

p

X

s=1

T

i

1

:::i

s

;1

ri

s

+1

:::i

p

j

1

:::j

q

;

i

s

rm

;

q

X

s=1

T

i

1

:::i

p

j

1

:::j

s

;1

rj

s

+1

:::j

q

;

rj

s

m

7.6.

: & & , \

",

r

0 &70.

7.7.

2 0 # -

0 .

7.8.

;

ijk

, -

0 0 ]

ijk

= ;

ijk

;

;

ikj

.

#

7.9.

]

!%

%

%

(1

2)

.

7.10.

%#.

7.11.

2# ;

,

] = 0.

#

7.12.

-

r

#%!

1)

*

r

%"

2)

*

r

"

3)

!

4*

(

%

)

!

!:

r

k

f =

@f

@x

k

"

4)

*

r

&

&

%&

!

r

k

T

i

= @T

i

@x

k

+

T

j

;

ijk

r

k

T

i

= @T

i

@x

k

;

T

j

;

j

ik

5)

!%

%&

&

%

T

S

%

4%

6#*

r

(

T

S) = (

r

T)

S + T

(

r

S):

.

20 ', (5). % ", &

. &0.

r

k

(

T

i

S

j

) = @

@x

k

(

T

i

S

j

) +

T

r

S

j

;

irk

+

T

i

S

r

;

j

rk

=

= ( @

@x

k

T

i

)

S

j

+

T

i

@

@x

k

(

S

j

) +

T

r

S

j

;

irk

+

T

i

S

r

;

j

rk

=

= (@T

i

@x

k

+

T

r

;

irk

)

S

j

+

T

i

(@S

j

@x

k

+

P

r

;

j

rk

) =

= (

r

k

T

i

)

S

j

+

T

i

(

r

k

S

j

)

:

2

7.13.

%# 5 &#. &0.

26

background image

7.14.

-

(1 { 5)

!

!

!44*-

.

,

!

!

#

4*

;

ijk

,

!%.

!%

,

!

r

%

%

#!

!

4%

'

!%.

.

,'

e

i

=

@

@x

i

e

j

=

dx

j

. -" 87 ;

ijk

' &# 8

r

k

e

i

= ;

j

ik

e

j

r

k

e

i

=

;

;

ijk

e

j

:

(3)

L &' " ", 0 (1 { 5) &', '

r

k

(

T

i

T

i

) = (

r

k

T

i

)

T

i

+

T

i

(

r

k

T

i

) =

=

@T

i

@x

k

+ ;

ijk

T

j

!

T

i

+

@T

i

@x

k

;

~;

j

ik

T

j

!

T

i

=

=

r

k

(

T

i

T

i

) + ;

ijk

T

j

T

i

;

~;

j

ik

T

j

T

i

|

{z

}

0

&# &0 ;

ijk

;

~;

j

ik

= 0.

1, ' & ;

ijk

7.3 &##

# H &. 4, ' & 50

0 .

,# 8 887 &#. &0. <-

'0 & & (1

1). %# #

T = T

ij

e

i

e

j

:

-"

r

k

T

lm

= (

r

T)

lmk

= (

r

T

ij

e

i

e

j

)

lmk

=

=

(

r

T

ij

)

e

i

e

j

+

T

ij

(

r

e

i

)

e

j

+

T

ij

e

i

(

r

e

j

)

l

mk

=

= @T

lm

@x

k

+

T

ij

(;

rki

e

r

)

e

j

l

m

+

T

ij

e

i

(;

j

rk

e

r

)

l

m

=

= @T

lm

@x

k

+

T

lr

;

rkm

+

T

lj

;

j

mk

:

2

7.15.

% '.

7.16.

V88 ' #

r

"-

(

Mg)

(

%

)

r

g = 0.

7.17.

/ 5 '

r

&7 & &

.

7.18.

7

#

(

Mg)

.,

!-

,

.

/

/44*

(%

84-

4%)

;

ijk

= 12 g

ir

@g

kr

@x

j

+ @g

jr

@x

k

;

@g

jk

@x

r

!

:

(4)

27

background image

.

%, ' :88 0 -

# (4). - #. % &-

,

0 =

r

k

g

ij

= @g

ij

@x

k

;

g

rj

;

rik

;

g

ir

;

rjk

:

,& ;

ijk

:=

g

ir

;

rjk

7' & , &'

@g

ij

@x

k

= ;

jik

+ ;

ijk

@g

ki

@x

j

= ;

ikj

+ ;

kij

@g

jk

@x

i

= ;

kji

+ ;

jki

:

2 & ' . #. %', ' -

;

ijk

= ;

ikj

, '

@g

ij

@x

k

+ @g

ki

@x

j

;

@g

ki

@x

j

= ;

jik

+ ;

ijk

+ ;

ikj

+ ;

kij

;

;

kji

+ ;

jki

=

= ;

jki

+ ;

ijk

+ ;

ijk

+ ;

kji

;

;

kji

+ ;

jki

= 2;

ijk

= 2

g

ir

;

rjk

, 7

g

ij

,

;

rjk

= 12g

ir

@g

ij

@x

k

+ @g

ki

@x

j

;

@g

ki

@x

j

!

:

3 # ' &# 5887 -

&# 8 (4) (&# !).

2

7.19.

2

%!

,

g

ij

0 & ( #, 0 &

ij

).

2

%!

,

0 ;

ijk

0.

7.20.

3# 5# 5. 0.

8.

(

#)

%# & | & #. .

'.. M & | \& ", . . . '.

&.. + ' &# -

0 &0. ? H . %. # &-

, . . # " & & & \# 0".

% 5 #, ", 0, 7 .

%0 ' &.

%# "

M 88 #

r

. %# '

P Q

M "0 0 : 01]

!

M, (0) = P, (1) = Q. M 0

& 0

(& # & #"

).

28

background image

8.1.

8

!

%

T

(

pq)

!%

&

r

_

(

T), & -

" & #" & 0 &0

T:

(

r

_

(

T))

i

1

:::i

p

j

1

:::j

q

:=

k

r

k

T

i

1

:::i

p

j

1

:::j

q

:

8.2.

/ &

T

%%%

!%

-

%

r,

r

_

(

T)

0.

1&H 5 #. . (

x

1

:::x

n

). +

(t) = (x

1

(

t):::x

n

(

t))

k

= dx

k

(

t)

dt

&

k

r

k

T

i

= dx

k

(

t)

dt

@T

i

@x

k

+

T

r

;

irk

!

= 0

dx

k

(

t)

dt

@T

i

@x

k

+

T

r

;

irk

dx

k

(

t)

dt =

dT

i

dt + T

r

;

irk

dx

k

(

t)

dt = 0:

8.3.

%

%%%

-

!%

.

1' &#" & " . 1 "-

, ' P Q " M #

r

,

v

2

T

P

M. M 0 0 w

2

T

Q

M, '

& &

V (t), &' V (0) = v V (1) = w. %# '

H# &# &#.

, 0 .

&. 0 0 , '#, '

0 0 .

/ ' H . 887#. -

0 &" & # 870

V

i

(

t) '# ' V

i

(0) =

v

i

,

H0 # &.. : , H 0 -

, &

Q, . . t = 1.

2,

w = V (1)

2

T

Q

M

%%%

v

2

T

P

M

!%

.

#

8.4.

(

Mg)

|

#.

-

44

r

M

%

!

%

!,

!

-

.

%%%

&

%

!

:

g

.

.

%#

r

| ,

h

::

i

| &, &-

g, V (t) W(t) | &, &#-

" & #

: 01]

!

M. M &#, '

d

dt

h

V (t)W(t)

i

0.

d

dt

h

V (t)W(t)

i

=

r

_

h

V (t)W(t)

i

=

k

r

k

g

ij

V

i

W

j

=

29

background image

=

k

(

r

k

g

ij

)

V

i

W

j

+

k

g

ij

(

r

k

V

i

)

W

j

+

k

g

ij

V

i

(

r

k

W

j

) =

=

k

0

V

i

W

j

+

g

ij

(

r

_

V

i

)

W

j

+

g

ij

V

i

(

r

_

W

j

) = 0

:

,, 5 H & &#. &0 # 0,

&#.

, V W &

k

V

i

W

j

r

k

g

ij

= 0 (

)

r

k

g

ij

= 0

:

2

8.5.

%# & &# '{

". . &7 &0 & " 8".

8.6.

:

" M 880 #

r

-

!,

& 0 &# # 50

0:

r

_

(_

) = 0.

/ #. . (

x

1

:::x

n

) &'

dx

k

dt

r

k

i

= 0

i = 1:::n

"

i

=

dx

i

dt

. ,

dx

k

dt

@

@x

k

i

+ ;

irk

r

!

= 0

d

2

x

i

dt

2

+ ;

irk

dx

r

dt

dx

k

dt = 0

i = 1:::n:

(5)

#

8.7.

P

2

M

,

v

2

T

P

M

.

!

.

!

!

(t)

,

!%.

%

(0) = P

_

(t) = v

.

/

:

%!

%&

!&.

.

% & #. . '

P ' . "'0 H n .

887#. 0 " & '# '-

H ' " &0 0, H # -

H. &.. : , H # ,

" '#. ..

2

8.8.

+ "' & 0 ',

&.

8.9.

% &# & # "'0 -

0 " # &.

#

8.10.

("'0 :88)

%

#&

-

&

%

e

i

:=

@

@x

i

!

!

%

r

e

i

(

e

j

) = ;

rji

e

r

(-

%'

#).

=

%,

#

%

%%%

e

i

{

%

#

%'

&!

/44*

;

i

.

.

% &

(

r

e

i

(

e

j

))

r

= (

e

i

)

s

(

r

s

(

e

j

))

k

=

si

@(e

j

)

k

@x

s

+ ;

krs

(

e

j

)

r

!

=

30

background image

=

si

@(

kj

)

@x

s

+ ;

krs

rj

!

=

si

;

krs

rj

= ;

kji

:

2

8.11.

,&# &7 &#" & 0 -

&. "'. . (&).

8.12.

(

Mg)

|

#.

%

'!

P

0

2

M

!

U

%

" > 0

,

%#

!

-

U

!

!

!

!%

:

"

.

/

!-

%!

&

*.

.

% 8.7 0

V ' (P

0

0)

" 0. 5

TM, 0

V =

f

(

Pv)

2

TM

j

P

2

U

k

v

k

< "

g

0

U ' P

0

, &# "

E : V

!

M

M

(

Pv)

7!

(

Pexp

P

(

v))

" exp

P

v ' (1) 0 "'-

0, .0

P & & v. / #, 1 &

"' (H 887#. 0) 0 0

v.

/'

E (P

0

0).

3 5"

(

x

1

:::x

n

v

1

:::v

n

) (

P

0

0) TM, " v = v

i @

@x

i

, -

(

x

11

:::x

n1

x

12

:::x

n2

)

U

U

M

M. 3 #"

dE :

@x

i1

@x

j

=

ij

@x

i1

@v

j

= 0

d

P

0

exp

P

0

(

v

t]) = d

v

dt

0

=

v

" & #" . - , 7

T

d

P

0

E

I

0

I

!

"

I | ' 7, .

. 1. - , & 0 87,

E 88-

8 #

V

0

' (

P

0

0)

2

TM #

W

0

' (

P

0

P

0

)

M

M. %. #H , '#,

'

W

0

=

U

0

U

0

, &'

U

0

H

" # g,

. . "# ., . 7 H

P

0

0 " '0

#H

"=2. -" U

0

| # '

P

0

. 30#, &#

P Q

| &# '

U

0

. < "'

, . '

P

0

& &

v, " (P

0

v) = E

;

1

(

PQ). -", & & E,

P

0

=

P (1) = Q. - , ' P Q "'0 .

,& "', & 0 , "

. 7

P Q. ,& . / 0 H ,

#" "'0 &, &5 & '

#" &0 #, ' 0

k

v

k

. -"

0

0 1 1

k

v

k

< ". ,# &# #. %#

P Q & "' #H ". -" H

31

background image

0 ' '# & ,

5 ' #" ' #H

"

t, " (t) = Q,

&'

E.

2

8.13.

%#, ' ., . exp, ;

ijk

P

0

#.

9.

!

Z# &# ' # &#" &-

' &

i- &, & & j- & "

&. :' , &5 . ,-

, # # ( ').

/ 5 &"8 # &&"

,

. <-

&. 0 (

x

1

:::x

n

) 0

r

k

r

l

;

r

l

r

k

&

T

i

( ' # | & (1,2)). %'

r

l

T

i

= @T

i

@x

l

+

T

r

;

irl

r

k

r

l

T

i

= @

2

T

i

@x

k

@x

l

+ @T

r

@x

k

;

irl

+

T

r

@;

irl

@x

k

+ ;

isk

@T

s

@x

l

+

T

r

;

srl

!

;

;

slk

@T

i

@x

s

+

T

r

;

irs

!

(

r

k

r

l

;

r

l

r

k

)

T

i

=

=

T

r

@;

irl

@x

k

;

@;

irk

@x

l

!

+ @T

r

@x

k

;

irl

;

@T

r

@x

l

;

irk

+ @T

s

@x

l

;

isk

;

@T

s

@x

k

;

isl

+

T

r

;

isk

;

srl

;

T

r

;

isl

;

srk

=

=

T

r

@;

irl

@x

k

;

@;

irk

@x

l

+ ;

isk

;

srl

;

;

isl

;

srk

!

:

,'

R

iqkl

:= @;

iql

@x

k

;

@;

iqk

@x

l

+ ;

isk

;

sql

;

;

isl

;

sqk

(6)

&', '

(

r

k

r

l

;

r

l

r

k

)

T

i

=

T

q

R

iqkl

:

#

9.1.

A*

R

iqkl

#

(1

3)

.

.

3 " " &

T 87 (

r

k

r

l

;

r

l

r

k

)

T

i

,

#,

T

q

R

iqkl

, & & (1

2). %# R

iqkl

=

(

e

q

)

s

R

iskl

,

R

i

0

q

0

k

0

l

0

= (

e

q

0

)

s

0

R

i

0

s

0

k

0

l

0

= (

e

q

0

)

s

R

iskl

@x

k

@x

k

0

@x

l

@x

l

0

@x

i

0

@x

i

= (

e

q

0

)

s

0

@x

s

@x

s

0

R

iskl

@x

k

@x

k

0

@x

l

@x

l

0

@x

i

0

@x

i

=

=

s

0

q

0

@x

s

@x

s

0

R

iskl

@x

k

@x

k

0

@x

l

@x

l

0

@x

i

0

@x

i

=

R

iskl

@x

s

@x

q

0

@x

k

@x

k

0

@x

l

@x

l

0

@x

i

0

@x

i

=

R

iqkl

@x

q

@x

q

0

@x

k

@x

k

0

@x

l

@x

l

0

@x

i

0

@x

i

:

2

32

background image

9.2.

L, &'0 & #, # 8-

: 5887 00

.

9.3.

-

R

iqkl

-

'0

r

.

#

9.4.

(

,

)

#-

M

%

%.

!

%

%!

!

!

-

.

.

+ , & &

. # :88, ', <.

2

%0 &

R.

9.5.

8

. &0

X Y

&

XY ] := X

i

@Y

k

@x

i

+

Y

i

@X

k

@x

i

:

3 '0

r

X

Y

k

;

r

Y

X

k

=

X

i

@Y

k

@x

i

+

Y

j

;

kji

!

;

Y

i

@X

k

@x

i

+

X

j

;

kji

!

=

XY ]

k

(7)

', &7 .

9.6.

,&

R(XY )Z :=

r

X

r

Y

(

Z)

;

r

Y

r

X

(

Z)

;

r

XY ]

(

Z):

, & &

X, Y Z '

&. / " & #" " & H &

, &H

R(XY )Z, R(XYZ).

9.7.

)#'

R

%.

-%!%,

!%

-

(1

3)

.

.

+

R | 0 . &0

' . &.,

e

T(XYZ!) := !(T(XYZ))

4-0 3. 1 " & ' 87..

- , '# &0.

-0# ' '. M. # -

" 87. 3, '

R(XY )(fZ) = f

R(XY )Z:

r

X

r

Y

(

fZ)

;

r

Y

r

X

(

fZ)

;

r

XY ]

(

fZ) =

=

r

X

((

r

Y

f)Z)+

r

X

(

f

r

Y

Z)

;

r

Y

((

r

X

f)Z)

;

r

Y

(

f

r

X

Z)

;

r

XY]

(

f)Z

;

f

r

XY ]

Z =

33

background image

= (

r

X

r

Y

f)Z +

r

Y

f

r

X

Z +

r

X

(

f)

r

Y

Z + f(

r

X

r

Y

Z)

;

(

r

Y

r

X

f)Z

;

r

X

f

r

Y

Z

;

;r

Y

f

r

X

Z

;

f(

r

Y

r

X

Z)

;

r

XY ]

(

f)Z

;

f

r

XY ]

Z =

=

r

X

r

Y

f

;

r

Y

r

X

f

;

r

XY ]

(

f)

Z + f

(

r

X

r

Y

Z)

;

(

r

Y

r

X

Z)

;

r

XY ]

Z

=

=

f

R(XY )Z

& , &#

r

X

r

Y

f

;

r

Y

r

X

f

;

r

r

X

Y

f +

r

r

Y

X

f =

=

X

i

@Y

k

@x

i

@f

@x

k

+

X

i

Y

k

@

2

f

@x

i

@x

k

;

Y

i

@X

k

@x

i

@f

@x

k

;

Y

i

X

k

@

2

f

@x

i

@x

k

;

;

(

X

i

r

i

Y )

k

@f

@x

k

+ (

Y

i

r

i

X)

k

@f

@x

k

=

=

X

i

@Y

k

@x

i

@f

@x

k

;

Y

i

@X

k

@x

i

@f

@x

k

;

X

i

@Y

k

@x

i

+ ;

ksi

Y

s

!

@f

@x

k

+

Y

i

@X

k

@x

i

+ ;

ksi

X

s

!

@f

@x

k

=

=

;

ksi

X

s

Y

i

;

;

ksi

Y

s

X

i

@f

@x

k

= 0

' .

% &# H

R(fXY )Z = f

R(XY )Z. 1, '

(

r

fX

)

T = (fX)

k

r

k

T = f X

k

r

k

T = f

r

X

T

r

fX

=

f

r

X

fXY ] =

r

fX

Y

;

r

Y

(

fX) = f

r

X

Y

;

(

r

Y

f)X

;

f

r

Y

X = f

XY ]

;

(

r

Y

f)X:

%', '

R(fXY )Z =

r

fX

r

Y

Z

;

r

Y

r

fX

Z

;

r

fXY]

Z =

=

f

r

X

r

Y

Z

;

r

Y

(

f

r

X

Z)

;

r

fXY ]

Z +

r

(

r

Y

f)X

Z =

=

f

r

X

r

Y

Z

;

r

Y

(

f)

r

X

Z

;

f (

r

Y

r

X

Z)

;

f

r

XY ]

Z + (

r

Y

f)

r

X

Z = f R(XY )Z:

V"' , '

R(XfY )Z = f

R(XY )Z.

2

#

9.8.

)!%

/%.

.

3 . &0

e

i

=

@

@x

i

R(e

i

e

j

)

Z

k

=

r

e

i

r

e

j

Z

k

;

r

e

j

r

e

i

Z

k

+

r

e

i

e

j

]

Z

k

=

r

i

r

j

Z

k

;

r

j

r

i

Z

k

&#

r

e

i

Z

k

= (

e

i

)

m

r

m

Z

k

=

mi

r

m

Z

k

=

r

i

Z

k

,

r

i

e

j

;

r

j

e

i

= ;

lji

e

l

;

;

lij

e

l

= 0

(8)

r

X

Y

k

;

r

Y

X

k

=

XY ]

k

(9)

& (7) # '. % 0 &' #.

2

34

background image

9.9.

( <)

1)

%

X

Y

:

R(XY )Z + R(YX)Z = 0

%

R

ijkl

+

R

ijlk

= 0

2)

'!

<#:

R(XY )Z + R(YZ)X + R(ZX)Y = 0

%

R

ijkl

+

R

iklj

+

R

ilkj

= 0

3)

!%

h

R(XY )ZW

i

+

h

R(XY )WZ

i

= 0

%

!&

R

ijkl

+

R

jikl

= 0

"

R

ijkl

=

g

ir

R

rjkl

4)

!%

h

R(XY )ZW

i

=

h

R(ZW)XY

i

%

!&

R

ijkl

=

R

klij

:

.

% 1) & & <-

.

2). / 0 ' &# (.) .

&0. % (8,9) . &0

R(e

i

e

j

)

e

k

+

R(e

j

e

k

)

e

i

+

R(e

k

e

i

)

e

j

=

r

e

i

r

e

j

e

k

;

r

e

j

r

e

i

e

k

;

r

e

i

e

j

]

e

k

+

+

r

e

j

r

e

k

e

i

;

r

e

k

r

e

j

e

i

;

r

e

j

e

k

]

e

i

+

r

e

k

r

e

i

e

j

;

r

e

i

r

e

k

e

j

;

r

e

k

e

i

]

e

j

=

=

r

e

i

e

j

e

k

]

;

r

e

j

e

i

e

k

]

;

r

e

k

e

j

e

i

] = 0

:

K 5" " , &' 8 ..

3). 3 &#0 00 8

B &7

B(u + vu + v) = B(uu) + B(uv)+ B(vu) + B(vv)

&, ' '# # &

B(ww) = 0

"

w. / H 0-

5 ' & " " &

Z

h

R(e

i

e

j

)

ZZ

i

= 0. 2 ' (8,9), ' #, '

hr

i

r

j

ZZ

i

=

hr

j

r

i

ZZ

i

:

35

background image

%# 870 & & '0, #

,

@

2

@x

i

@x

j

h

ZZ

i

=

r

i

(

hr

j

ZZ

i

+

h

Z

r

j

Z

i

) = 2

r

i

hr

j

ZZ

i

= 2

hr

i

r

j

ZZ

i

+2

hr

j

Z

r

i

Z

i

@

2

@x

j

@x

i

h

ZZ

i

= 2

hr

j

r

i

ZZ

i

+ 2

hr

i

Z

r

j

Z

i

:

/' &" H &## '#

" &, &' H. = &'# -

., &H:

0 =

h

R(e

i

e

j

)

e

k

e

l

i

+

h

R(e

i

e

j

)

e

l

e

k

i

=

g

rs

(

R(e

i

e

j

)

e

k

)

r

(

e

l

)

s

+

g

rs

(

R(e

i

e

j

)

e

l

)

r

(

e

k

)

s

=

=

g

rs

R

rmij

(

e

k

)

m

sl

+

g

rs

R

rmij

(

e

l

)

m

sk

=

g

rl

R

rkij

+

g

rk

R

rlij

=

g

lr

R

rkij

+

g

kr

R

rlij

=

R

lkij

+

R

klij

:

4). 3 # # 0. J 5 &

. "# ' '

i, H. &, .

'

i, # 7' &. _, &

" H "

i, . 0 | q, k l, ' 5

. ? ., & ". / H.,

7# '. ', & '-

, . ., &, & .0 H

R

iqkl

|

R

lkqi

.

;

;

;

;

;

;

B

B

B

B

B

B

B

B

B

B

B

e

e

e

e

e

e

e

e

@

@

@

@

@

@

@

L

L

L

L

L

L

L

L

L

L

i

k

q

l

R

lkqi

R

ilqk

R

iklq

R

iqkl

R

qlki

R

kqli

2 &, . H. 0 '0 ", ,

. &. 3 "

i 5

T. % 5, &, "

q:

R

iqkl

+

R

kqli

+

R

qlki

=

;

R

qikl

;

R

qkli

;

R

qlik

= 0

36

background image

&# & T. -&# . .. "0

i

q ' . k l:

0 = (

R

iqkl

+

R

iklq

+

R

ilqk

) + (

R

iqkl

+

R

kqli

+

R

qlki

)

;

;

(

R

kqli

+

R

iklq

+

R

lkqi

)

;

(

R

ilqk

+

R

lkqi

+

R

qlki

) = 2

R

iqkl

;

2

R

lkqi

:

2

3 7 5" &"8 # .

9.10.

2

R

jl

=

R

ijil

<

0 0 . 2 & &

<''

R = g

li

R

il

%

.

9.11.

3#, ' <'' '.

9.12.

%

%

'!

R

iqkl

=

g

ir

R

rqkl

= 12

@

2

g

il

@x

q

@x

k

+ @

2

g

qk

@x

i

@x

l

;

@

2

g

ik

@x

q

@x

l

;

@

2

g

ql

@x

i

@x

k

!

+

g

mp

(;

mqk

;

p

il

;

;

mql

;

p

ik

)

:

.

,' & 8.

q l ' S

iql

&,

& (

x

1

:::x

n

) ;

iql

. / 50

g

ir

R

rqkl

=

g

ir

"

@;

rql

@x

k

;

@;

rqk

@x

l

+ ;

p

ql

;

rpk

;

;

p

qk

;

rpl

#

=

=

g

ir

2

Alt

(

kl)

"

@;

rql

@x

k

+ ;

p

ql

;

rpk

#

= 2

Alt

(

kl)

2

6

4

g

ir

r

k

S

rql

+ (

r

k

g

ir

)

|

{z

}

0

S

rql

3

7

5

=

= 2

Alt

(

kl)

h

r

k

(

g

ir

S

rql

)

i

:

%#

g

ir

1

2 g

rs

@g

sq

@x

l

+ @g

sl

@x

q

;

@g

ql

@x

s

!

= 12

@g

iq

@x

l

+ @g

il

@x

q

;

@g

ql

@x

i

!

& 8.

q l & g

ir

S

rql

| & (0,1),

g

ir

R

rqkl

=

Alt

(

kl)

"

@

@x

k

@g

iq

@x

l

+ @g

il

@x

q

;

@g

ql

@x

i

!

;

@g

mq

@x

l

+ @g

ml

@x

q

;

@g

ql

@x

m

!

;

mik

#

=

=

Alt

(

kl)

"

@

2

g

iq

@x

k

@x

l

+ @

2

g

il

@x

k

@x

q

;

@

2

g

ql

@x

k

@x

i

!

;

2

g

mr

;

rlq

;

mik

#

=

= 12

@

2

g

iq

@x

k

@x

l

+ @

2

g

il

@x

k

@x

q

;

@

2

g

ql

@x

k

@x

i

!

;

1

2

@

2

g

iq

@x

l

@x

k

+ @

2

g

ik

@x

l

@x

q

;

@

2

g

qk

@x

l

@x

i

!

;

;

g

mr

;

rlq

;

mik

+

g

mr

;

rkq

;

mil

' 0 # & ' ' .

2

37

background image

/

9.13.

B%

#.

%

-

!,

#

%

%%

%-

!

!

(*

)

%

%%

-

%!

%

(%

844%

%).

9.14.

= " " ?

9.15.

7

!

&

M

%

!-

:

R = 2K

.

.

%# & &'', '#,

' 0 '

P

2

M " "8

x

3

=

f(x

1

x

2

) . .,

x

3

(

P) = 0, # &# T

P

M =

Ox

1

x

2

,

~r

1

= (1

0 @f

@x

1

)

~r

2

= (0

1 @f

@x

2

)

g

11

= 1 +

@f

@x

1

!

2

g

22

= 1 +

@f

@x

2

!

2

g

12

=

g

21

= @f

@x

1

@f

@x

2

| & 0 '

P. C #0 & &-

', ' '

P &

@f

@x

1

=

@f

@x

2

= 0. 1', &#

@

@x

k

@f

@x

i

@f

@x

j

!

= @

2

f

@x

k

@x

i

@f

@x

j

+ @f

@x

i

@

2

f

@x

k

@x

j

= 0

'

P

@

@x

k

(

g

ij

)

j

P

= 0. %5 ;

ijk

(

P) = 0. % 8 9.12 (

) & ( &H

@f

@x

i

=

f

i

)

R

12

12

= 12

@

2

g

12

@x

1

@x

2

+ @

2

g

21

@x

1

@x

2

;

@

2

g

11

@x

2

@x

2

;

@

2

g

22

@x

1

@x

1

!

=

= 12

f

2(

f

1

f

2

)

12

;

((

f

2

)

2

)

11

;

((

f

1

)

2

)

22

g

= (

f

11

f

2

+

f

1

f

12

)

2

;

(

f

2

f

21

)

1

;

(

f

1

f

12

)

2

=

=

f

112

f

2

+

f

11

f

22

+

f

12

f

12

+

f

1

f

122

;

f

12

f

12

;

f

2

f

112

;

f

12

f

12

;

f

1

f

122

=

=

f

11

f

22

;

f

12

f

12

=

f

11

f

12

f

12

f

22

=

K

&# 5887 0 '0 8

b

ij

(

P) =

h

~r

ij

~n

i

=

h

(0

0f

ij

)

(001))

i

=

f

ij

7 &0 | ', ' & ". &

& 7 0 8. 1, '

R

12

12

=

K

&7#0 , | & , &

| . 3,

R = g

kl

R

kl

=

g

kl

R

ikil

=

g

kl

g

ir

R

rkil

:

38

background image

<

R

ijkl

:

R

12

12

=

;

R

21

12

=

;

R

12

21

=

R

21

21

R

11

ij

=

R

22

ij

=

R

km11

=

R

km22

= 0

:

%5

R = g

22

g

11

R

12

12

+

g

12

g

12

R

21

12

+

g

21

g

21

R

12

21

+

g

11

g

22

R

21

21

=

=

R

12

12

(

g

22

g

11

;

g

12

g

12

;

g

21

g

21

+

g

11

g

22

) = 2

R

12

12

det

k

g

ij

k

= 2 R

12

12

det

k

g

ij

k

:

? . / H0 &7#0

g

ij

(

P) =

ij

R(P) = 2

K(P).

2

/

9.16.

9

%

4

&-

,

%!%,

&.

#

9.17.

(

x

1

:::x

n

)

|

!

P

2

M

,

!

(

M

r

)

|

#

,

#%

,

x

i

(

P) = 0

8

i

.

2

T

P

M

|

%

,

"

=

"

(

ij)

|

%-

-

6

?

0

"

"

6

-

x

j

x

i

39

background image

!

lim

"

!

0

k"

;

k

"

2

=

R

klij

l

:

.

/&H & # 0 0

s

0

s:

0 = d

k

ds + ;

klm

l

dx

m

ds

d

k

=

;

;

klm

l

dx

m

'# " &

k

(

s)

k

(

s

0

)

;

;

klm

(

s

0

)

l

(

s

0

)B

x

m

;

klm

(

s)

;

klm

(

s

0

) + @;

klm

@x

r

(

s

0

)B

x

r

:

- ,

d

k

"

;

;

klm

(

s

0

) + @;

klm

@x

r

(

s

0

)B

x

r

!

l

(

s

0

)

;

;

lpr

(

s

0

)

p

(

s

0

)B

x

r

#

dx

m

"

;

klm

(

s

0

)

l

(

s

0

) +

;

@;

klm

@x

r

(

s

0

)

l

(

s

0

) + ;

klm

(

s

0

);

lpr

(

s

0

)

p

(

s

0

)

!

B

x

r

#

dx

m

:

%0 , ' & &

P, ',

' & " #, ' 0 ( &

. ) <:

k"

;

k

"

;

@;

kpm

@x

r

+ ;

klm

;

lpr

#

l

I

B

x

r

@x

m

@u

1

du

1

+ @x

m

@u

2

du

2

!

=

& 8 _

=

"

;

@;

kpm

@x

r

+ ;

klm

;

lpr

#

l

Z

Z

2

@

@u

1

B

x

r

@x

m

@u

2

!

;

@

@u

2

B

x

r

@x

m

@u

1

!

!

du

1

du

2

=

=

"

;

@;

kpm

@x

r

+ ;

klm

;

lpr

#

l

Z

Z

2

@x

r

@u

1

@x

m

@u

2

;

@x

m

@u

1

@x

r

@u

2

!

du

1

du

2

=

=

"

;

@;

kpm

@x

r

+ ;

klm

;

lpr

#

l

"

2

(

rm

) =

"

2

R

klij

l

:

2

M& &.

9.18.

3

f

0

f

1

:

M

!

N "" " M

"

N

%!

,

"

F " M

0

1] N, '

F(P0) = f

0

(

P)

F(P1) = f

1

(

P)

8

P

2

M:

? & . & "& . &0,

&# " { . = &

, '#, ' &#

ab], (a

;

"b + "),

' (

a

;

"b + ")

0

1] ". :', & 5

#, '

F(0t) = f

0

(0) =

f

1

(1)

F(1t) = f

0

(1) =

f

1

(1)

8

t

2

0

1]:

40

background image

9.19.

%' 5 . ?

+ # ", &' & (&-

0)

&. 0

f

0

f

1

&#" &"'"

&

M & N.

9.20.

%, ' &0 "& . ". -

0 . " "&#.

9.21.

%

!

%

!,

!

%-

%%%

!

!

(%,

'

,

%

-

!

&!

).

.

+ # & & " -

& . , , ' "

"- &-

0 , &' & 0, ' < .

,, &#

0

1

: (

;

"1+")

!

M | "& ,

0

(0) =

1

(0) =

P

0

,

0

(1) =

1

(1) =

P

1

, "&

G : (

;

"1 + ")

0

1]

!

M 5

&

t (' s & (

;

"1+"), t { 01]). ,

&

t

(

s) | # # G(st) & 8 t ( ',

0

(

s)

1

(

s) | #

0

1

), &

s

(

t) | # #

G(st) & 8 s. , " v

2

T

P

0

M

&

v

s

(

t), " v

s

(

t) | # & v #

t

(

s) = G(st) & 8-

t ' & s. (1, ' & & &

' ", # "# 0.) ,,

&

v

s

(

t) & # G(st) & 8 s.

30#,

r

t

(

s)

r

s

(

t)

v

is

(

t)

;

r

s

(

t)

r

t

(

s)

v

is

(

t)

;

r

t

(

s)

s

(

t)]

v

is

(

t) = R

ijkl

v

js

(

t)

kt

(

s)

ls

(

t):

% &

v

s

(

t) " . /

<, & '#. -# " ,

, &"

G(ts) = (x

1

(

ts):::x

n

(

ts)),

t

(

s)

s

(

t)]

k

=

t

(

s)

j

@

s

(

t)

k

@x

j

;

s

(

t)

j

@

t

(

s)

k

@x

j

=

= @x

j

@s

@

@x

j

@x

k

@t

!

;

@x

j

@t

@

@x

j

@x

k

@s

!

= @

2

x

k

@s@t

;

@

2

x

k

@t@s = 0:

C, &

r

s

(

t)

v

s

(

t) & # 0

t

(

s) & &

0 &

s = 0 ( v

0

(

t)

v). 2#,

r

s

(

t)

v

s

(

t) = 0 & s,

', &

s = 1.

- , &#

G(1t)

P

1

,

1

(

t)

0

0 =

r

1

(

t)

v

i

1

(

t) = ddtv

i

1

(

t) + ;

imk

m

1

(

t)v

k

1

(

t) = ddtv

i

1

(

t)

. .

v

1

t.

2

41

background image

10.

,%%

&

#%-

%

&.

%

< &# ' #

r

"

M

(&, # 0 ) H 887#-

8

! " k, . . ' & & (0k). %-

. 8 '# ' `

k

(

M). -" &

:

!44*%

!

d! 8 ! & 8

d! :=

(

k + 1)!

k! Alt

r

!

.

(

d!)

i

1

:::i

k

+1

=

1

k!

X

2

S

k

+1

(

;

1)

r

(j

k

+1

)

!

(j

1

)

:::(j

k

)

:

"

, ' .

(

;

1)

=

sgn

1

:::kk + 1

(k + 1)(1):::(k)

!

. .

= (

;

1)

k

. : &,

d! | H 8 " k + 1.

#

10.1.

9!

d!

#

.

=,

(

d!)

i

1

:::i

k

+1

=

k+1

X

s=1

(

;

1)

s+1

@!

j

1

:::j

s

;1

j

s

+1

:::j

k

@x

j

s

:

.

% & 0 &0

(

d!)

i

1

:::i

k

+1

=

= 1k!

X

2

S

k

+1

(

;

1)

"

@!

(j

1

)

:::(j

k

)

@x

(j

k

+1

)

;

k

X

r=1

!

(j

1

)

:::(j

r

;1

)

(j

r

+1

)

:::(j

k

)

;

(j

r

)

(j

k

+1

)

#

=

= 1k!

X

2

S

k

+1

(

;

1)

@!

(j

1

)

:::(j

k

)

@x

(j

k

+1

)

;

;

1

k!

X

2

S

k

+1

k

X

r=1

h

;

(j

r

)

(j

k

+1

)

;

;

(j

k

+1

)

(j

r

)

i

!

(j

1

)

:::(j

r

;1

)

(j

r

+1

)

:::(j

k

)

=

( ' )

= 1k!

X

2

S

k

+1

(

;

1)

@!

(j

1

)

:::(j

k

)

@x

(j

k

+1

)

=

= 1k!

k+1

X

s=1

X

2

S

k

sgn

1

:::k + 1

s(1):::(s

;

1)

(s + 1)(k + 1)

!

@!

(j

1

)

:::(j

s

;1

)

(j

s

+1

)

:::(j

k

+1

)

@x

j

s

=

42

background image

= 1k!

k+1

X

s=1

X

2

S

k

(

;

1)

s

;

1

(

;

1)

@!

(j

1

)

:::(j

s

;1

)

(j

s

+1

)

:::(j

k

+1

)

@x

j

s

=

( '

!)

= 1k!

k+1

X

s=1

X

2

S

k

(

;

1)

s

;

1

(

;

1)

(

;

1)

@!

j

1

:::j

s

;1

j

s

+1

:::j

k

+1

@x

j

s

=

= 1k!

k!

k+1

X

s=1

(

;

1)

s+1

@!

j

1

:::j

s

;1

j

s

+1

:::j

k

+1

@x

j

s

:

2

10.2.

_ 887#0 8 . &-

'# \& 887". C, ,

' '0 887 87 & H, , # "

'# '

df, &# &7 (5 1-8, "

()'),

! =

X

i

1

<:::<i

k

!

i

1

:::i

k

dx

i

1

^

:::

^

dx

i

k

&

d! =

X

i

1

<:::<i

k

d(!

i

1

:::i

k

)

^

dx

i

1

^

:::

^

dx

i

k

=

X

i

1

<:::<i

k

X

i

0

@(!

i

1

:::i

k

)

@x

i

0

dx

i

0

^

dx

i

1

^

:::

^

dx

i

k

:

-" 5 & & H.

10.3.

%#.

10.4.

!

(1)

!

(2)

|

!44*%

4

p

q

-

.

!

d(!

(1)

^

!

(2)

) =

d!

(1)

^

!

(2)

+ (

;

1)

p

!

(1)

^

d!

(2)

:

.

3' &# 0 8 (

0 &" )

!

(1)

=

f dx

i

1

^

:::

^

dx

i

p

!

(2)

=

g dx

j

1

^

:::

^

dx

j

q

:

-" & & '

d(!

(1)

^

!

(2)

) =

d(fg dx

i

1

^

:::

^

dx

i

p

^

dx

j

1

^

:::

^

dx

j

q

) =

= @f

@x

k

g dx

k

^

dx

i

1

^

:::

^

dx

i

p

^

dx

j

1

^

:::

^

dx

j

q

+

f @g

@x

k

dx

k

^

dx

i

1

^

:::

^

dx

i

p

^

dx

j

1

^

:::

^

dx

j

q

=

=

@f

@x

k

dx

k

^

dx

i

1

^

:::

^

dx

i

p

!

^

g dx

j

1

^

:::

^

dx

j

q

+

+(

;

1)

p

f dx

i

1

^

:::

^

dx

i

p

^

@g

@x

k

dx

k

^

dx

j

1

^

:::

^

dx

j

q

!

=

=

d!

(1)

^

!

(2)

+ (

;

1)

p

!

(1)

^

d!

(2)

:

2

43

background image

10.5.

%

%#

4

!

d(d!) = 0

.

.

2 ' &# 8

! = f dx

i

1

^

:::

^

dx

i

p

. K ",

!

(1)

!

(2)

, .

H" &. 30#,

dd(!

(1)

^

!

(2)

) =

d(d!

(1)

^

!

(2)

+ (

;

1)

p

!

(1)

^

d!

(2)

) =

=

dd!

(1)

^

!

(2)

+ (

;

1)

p+1

d!

(1)

^

d!

(2)

+ (

;

1)

p

d!

(1)

^

d!

(2)

+ (

;

1)

p+p

!

(1)

^

dd!

(2)

= 0

:

- , # &#

f dx

i

. C

d(df) = d( @f

@x

k

dx

k

) = @

2

f

@x

i

@x

k

dx

i

^

dx

k

=

X

i<k

@

2

f

@x

i

@x

k

;

@

2

f

@x

k

@x

i

!

dx

i

^

dx

k

= 0

:

=

dx

i

, & &

f = x

i

:

dd(dx

i

) =

d(ddx

i

) =

d(0) = 0:

2

10.6.

/H 887# 8

,

d! = 0, . . !

2

Ker

d,

,

! = d!

1

0 8

!

1

, . .

!

2

Im

d.

% &0 (', 0)

d 0

Im

d

Ker

d. - , " k & 8& k-

. . 8 &

k- ' 8. ? 0 &

H

k

(

M)

k

-&

%

!

"

M.

% " 00 8 &# -

0 887#0 8.

10.7.

%#

f : M

!

N | " ". "-

0,

!

2

`

k

(

N) | 887# 8.

)#

#

f

! 50

8 &0 . &0

M:

f

!(~v

1

:::~v

k

) :=

!(d

P

f(~v

1

)

:::d

P

f(~v

k

))

~v

i

2

T

P

M:

10.8.

%#, ' &' 887# 8.

#

10.9.

(

x

1

:::x

m

)

|

%%

!

P

2

M

,

(

y

1

:::y

n

)

|

f(P)

2

N

,

%%

f : M

!

N

!

4*

y

1

(

x

1

:::x

m

)

:::y

n

(

x

1

:::x

m

)

4

!

|

! =

X

i

1

<:::<i

k

!

i

1

:::i

k

(

y

1

:::y

n

)

dy

i

1

^

:::

^

dy

i

k

:

!

#

#

%%

!%

4%

f

(

!) =

X

i

1

<:::<i

k

!

i

1

:::i

k

(

y

1

(

x

1

:::x

m

)

:::y

n

(

x

1

:::x

m

))

df

i

1

(

x

1

:::x

m

)

^

:::

^

df

i

k

(

x

1

:::x

m

)

:

(10)

44

background image

.

f

(

!)(~v

1

:::~v

k

) =

!(d

P

f(~v

1

)

:::d

P

f(~v

k

)) =

!(d

P

f(~v

1

)

:::d

P

f(~v

k

)) =

=

0

@

X

i

1

<:::<i

k

!

i

1

:::i

k

(

y

1

:::y

n

)

dy

i

1

^

:::

^

dy

i

k

1

A

(

d

P

f(~v

1

)

:::d

P

f(~v

k

)) =

=

X

i

1

<:::<i

k

!

i

1

:::i

k

(

y

1

:::y

n

)

Alt

i

1

:::i

k

]

n

dy

i

1

(

d

P

f(~v

1

))

:::dy

i

k

(

d

P

f(~v

k

))

o

=

=

X

i

1

<:::<i

k

!

i

1

:::i

k

(

y

1

:::y

n

)

Alt

i

1

:::i

k

]

(

@f

i

1

@x

j

1

(

~v

1

)

j

1

::: @f

i

k

@x

j

k

(

~v

1

)

j

k

)

=

=

X

i

1

<:::<i

k

!

i

1

:::i

k

(

y

1

:::y

n

)

Alt

i

1

:::i

k

]

n

df

i

1

(

~v

1

)

:::df

i

k

(

~v

1

)

o

=

=

0

@

X

i

1

<:::<i

k

!

i

1

:::i

k

(

y

1

:::y

n

)

df

i

1

^

:::

^

df

i

k

1

A

(

~v

1

:::~v

k

)

:

2

10.10.

%# " "

M,

dim

M = n, 8 ! #0 & (. . deg ! = n) &-

0 (

U'

) (

x

1

:::x

n

). 1# ,

" &, & 0

'

&

-

012'

.

,&

%

! & U 80

Z

U

! :=

Z

'

(

U)

R

n

!

12

:::n

dx

1

:::dx

n

:

(11)

#

10.11.

=%

!%

,

.

.

(11)

#

%%&

!

!%&

U

.

.

%# (

U'

) | "

U #

(

x

1

:::x

n

). -" & & " 6.31

&#0 .

Z

'

(

U)

R

n

!

12

:::n

dx

1

:::dx

n

=

Z

'

(

U)

R

n

!

12

:::n

det

@x

i

@x

j

dx

1

:::dx

n

=

=

Z

'

(

U)

R

n

!

12

:::n

det

@x

i

@x

j

dx

1

:::dx

n

=

Z

'

(

U)

R

n

!

12

:::n

dx

1

:::dx

n

:

2

10.12.

%#

M | " ",

dim

M = n, 8 ! #0 & (. . deg! = n) & -

. 3 # '"

f

(

U

'

)

g

&'"

7

&

%

Z

M

! = I(M!

f

(

U

'

)

g

) :=

X

Z

U

!:

45

background image

#

10.13.

=%

!%

,

.

.

#

f

(

U

'

)

g.

.

+ # . , # . 9,

7 & 87. 3 " . "

. - , #

I(M!

f

(

U

'

)

g

) =

I(M!

f

(

U

'

0

0

)

g

)

:

M# (" "") , . .

'

,

&0 . C, # #, '

I(M!

f

(

U

'

)

g

) =

I(M!

f

(

U

'

0

)

g

)

:

%

:=

;

0

,

= 1:::N, '

k

X

=1

= 0

k = N:

(12)

-" # & 8

k

X

=1

Z

U

!

k = N

(13)

&# 70 &

k. -. . &&, ' k =

1

:::N

;

1 &#.

: 0

!

R

+

supp

U

8 (12) '

(13) (

k = 1 5 #). %# " 87 : M

!

0

1]

1 supp

N

U

N

supp

U

N

. - 87 #

&"'" &

M. - ,

N

N

N

=

;

N

;

1

X

=1

=

;

N

;

1

X

=1

supp(

)

(

U

N

\

U

)

:

%5

N

X

=1

Z

U

! =

Z

U

N

N

! +

N

;

1

X

=1

Z

U

! =

;

N

;

1

X

=1

Z

U

! +

N

;

1

X

=1

Z

U

! =

=

N

;

1

X

=1

Z

U

(

;

)

!:

(14)

%#

N

;

1

X

=1

(

;

) =

N

;

1

X

=1

;

N

;

1

X

=1

=

N

;

1

X

=1

+

N

=

N

;

1

X

=1

+

N

=

N

X

=1

= 0

&# (14) && 7.

2

,'

46

background image

!

3

10.14.

=%

%

%

#'

!

R

`

ncomp

(

MOr)

!

R

:

10.15.

-&# &#

#$

#

' " 8 9.

10.16.

%#, ' & 7 " .

10.17.

%#, ', & . . "'.

, '# " 8 : # -

" , 0 . 0 , &"#

"' 8 #. ., # #.

10.18.

(, 8 2).

%!

#

M

@M

,

dim

M = n

,

:

!44*%

4

!

%

M

,

deg

! = n

;

1

.

=

%!.

#.

4%

-

(

;

1)

n

Z

M

d! =

Z

@M

!

=

Z

@M

'

!

(15)

!

' : @M

!

M

|

%'

.

.

/ 0 . '0 8 (15) &

!, '

&# 8

! 0 (&# ! =

P

!, "

f

g

| 7, &' # ' )

0
! = f(x

1

:::x

n

)

dx

1

^

:::

^

dx

k

;

1

^

dx

k+1

^

:::

^

dx

n

d! = (

;

1)

k

;

1

@f

@x

k

dx

1

^

:::

^

dx

n

"

f :

R

n

+

!

R

| " 87 & . M&, '

x

n

0

@M . x

n

= 0. 2, '

'0

k

n

;

1. N#

' : @M

!

M

'(x

1

:::x

n

;

1

) = (

x

1

:::x

n

;

1

0)

d'

n

= 0, '

'

! = 0 (. (10)). 3 0 ' (15)

Z

R

n

+

d! =

Z

R

n

+

(

;

1)

k

;

1

@f

@x

k

dx

1

:::dx

n

=

= (

;

1)

k

;

1

Z

R

n

;1

+

8

<

:

+

1

Z

;1

@f

@x

k

dx

k

9

=

dx

1

:::dx

k

;

1

dx

k+1

dx

n

=

= (

;

1)

k

;

1

Z

R

n

;1

+

n

f(x

1

:::x

k

;

1

+

1

x

k+1

:::x

n

)

;

;

f(x

1

:::x

k

;

1

;1

x

k+1

:::x

n

)

o

dx

1

:::dx

k

;

1

dx

k+1

dx

n

=

47

background image

= (

;

1)

k

;

1

Z

R

n

;1

+

n

0

;

0

o

dx

1

:::dx

k

;

1

dx

k+1

dx

n

= 0

(# &. & ).

< &# '0

k = n. -&#

Z

R

n

+

d! =

Z

R

n

+

(

;

1)

n

;

1

@f

@x

n

dx

1

:::dx

n

=

= (

;

1)

n

;

1

Z

R

n

;1

0

8

<

:

+

1

Z

0

@f

@x

n

dx

n

9

=

dx

1

:::dx

n

;

1

=

= (

;

1)

n

;

1

Z

R

n

;1

0

n

f(x

1

:::x

n

;

1

+

1

)

;

f(x

1

:::x

n

;

1

0)

o

dx

1

:::dx

n

;

1

=

= (

;

1)

n

Z

R

n

;1

0

f(x

1

:::x

n

;

1

0)dx

1

:::dx

n

;

1

=

Z

R

n

;1

0

'

!

(# &. " & & -

).

2

10.19.

/ 0 8 2 8

1) _
2) 2
3) ,"" | _.

48


Wyszukiwarka

Podobne podstrony:
Skopenkov A B Osnovy differencial noj geometrii v interesnyx zadachax (LShSM, MCNMO, 2009)(ISBN 9785
Kazaryan M E Kurs differencial noj geometrii (NMU, 2001 2002)(MCNMO, 2002)(ru)(42s) MDdg
Geometria i topologia
polnyj kurs lekcij po russkoj istorii
Konspekt pilotażu po mieście Wrocław
kons Orientownie się w terenie bez mapy, PO, Konspekty lekcji PO
Geometria i topologia
konspekt wędrówki po warszawie, nauczanie zintegrowane, Konspekty kl. 2
ginekologia konspek 4 doba po porodzie, FizZjoterapia, Ginekologiaa
konspekt Marsz na azymut, PO, Konspekty lekcji PO
konspekt przenoszenie i ewakuacja poszkodowanych w wypadkach drogowych, PO, Konspekty lekcji PO
Geometria i topologia
Besov O V Kurs lekcij po matematicheskomu analizu (MFTI, 2004)(ru)(65s) MCet
KONSPEKT ĆW PO ZAWALE KARDIO
Dubrovina T , Dubrovin N Algebra i geometriya (Vladimir, 2002)(ru)(113s) MAl
Semestrovaja kontrol#naja rabota po TFKP (3 kurs, osennij semestr, MFTI, 1998)(ru)(4s)

więcej podobnych podstron