(
.
.
,
3-
$
,
%& %&,
%
1997/98
$,. -&)
1.
1.1.
X : X
X
!
0
1
), :
1)
(xy) = 0
,
x = y
8
xy
2
X ( )
2)
(xy) = (yx)
8
xy
2
X ( )
3)
(xz)
(xy) + (yz)
8
xyz
2
X ( "#).
% (
X)
.
%&
Y
X
' ' &.
Y diamY := sup
xy
2
Y
(xy). ( ' -
.
B
"
(
x) :=
f
y
2
X
j
(yx) < "
g
:
Y
X Z
X | (YZ) := inf
y
2
Yz
2
Z
(yz).
+
(yY ) = 0, y |
Y .
Y
Y :=
f
' &
Y
g
. ,', '
Y
Y . ( Y
,
Y = Y . -' x
Y ,
" > 0 , ' B
"
(
x)
Y ( ', x
2
Y ).
Y
&# Int
Y
Y " . '. ( Y
,
Y = IntY .
1.2.
%#
X | ' &. -" Y
X "
# ", "
X
n
Y .
1.3.
X
|
.
!
1
X
"
2
O
"
3
O
#$!
S
2
A
U
%#
#
&
!'
U
X
"
4
O
k
T
i=1
U
i
#
&
!'
U
i
X
-
"
1
"
2
X
"
1
3
T
2
A
F
%#
#
&
!'
F
X
"
4
#$!
k
S
i=1
F
i
#
&
!'
F
i
X
-
"
.
/ &0 ' k O
)
k 1
8
k. 20 1 , 2 ,
'. 3 3,. %#
U =
S
2
A
U
x
2
U. -" 0 , '
x
2
U
B
"()
U
. -"
B
"()
U
U.
3 4 ,. %#
U =
k
T
i=1
U
i
,
x
2
U. -" "
i
(
i = 1:::k)
., '
x
2
B
"
i
(
x)
U
i
. %#
" := min
f
"
1
:::"
k
g
. -"
B
"
(
x)
B
"
i
(
x)
U
i
8
i. 1', B
"
(
x)
U.
2
1.4.
%#, ' ' # #.
1.5.
3#, '
B
"
(
x) .
1.6.
3#, ' Int
Y .
1.7.
3#, '
Y .
1.8.
%
X " &-
(5 &
),
:
1)
X
2
2)
2
3)
U
2
8
2
A,
S
2
A
U
2
4)
U
1
:::U
k
2
,
k
T
i=1
U
i
2
.
% (
X)
%
.
(
F =
X
n
U, " U
2
,
.
1.9.
%# . 0 1 1 { 4 1.
!
1.10.
(' & &"'.
1.11.
% & &"'" & (
X), -
" 0 0 (": &" ).
1.12.
)
'
x
2
X (& Y
X) -
(") .
Y
X
| '
x
2
X, ' # & &' Y .
Y | 5 Y . ' & Y ( ' Y
Y ).
-'
x
2
Y
'0
Y , 0 #
U ' x, ' x
2
U
2
Y . 2&# . . ' Y
Y ' IntY .
1.13.
Y
X " # ", " Y = Y .
1.14.
Y .
1.15.
%#
Y
X, (X) | &"' &. -&-
"
1
:=
f
U
\
Y
j
U
2
g
&"0,
!*
Y .
2
1.16.
%#
1
&".
1.17.
%# (
X
X
) | ' &. -" &"
Y
X &:
1)
X
&
X
, 7
1
,
2)
X
& "'
Y
Y
, &
Y
.
3#, '
1
=
Y
.
1.18.
%
Y
X
(!)
%,
Y = X.
1.19.
%#
Y
1
X Y
2
X | & &. -"
Y = Y
1
\
Y
2
| & &.
1.20.
,
f : X
!
Y &"'. & -
x
0
2
X, 0 V (f(x
0
))
#
U(x
0
), '
f(U(x
0
))
V (f(x
0
)). ,, -
& 0 ',
.
1.21.
-%!.
%
/%:
1)
f : X
!
Y
"
2)
!%
%#
V
Y
#
f
;
1
(
V )
X
"
3)
!%
%#
F
Y
#
f
;
1
(
F)
X
.
.
%#
f
;
1
(
Y
n
V ) = f
;
1
(
Y )
n
f
;
1
(
V ) = X
n
f
;
1
(
V ),
2 35.
%# &#
f &, V
Y | . -" &-
V &, , , , ' x: f(x)
2
V .
-" & & 0 0 ' 0 #
U(x),
'
f(U(x))
V , . . U(x)
f
;
1
(
V ). - , ' f
;
1
(
V ) |
.
,, &# & 2. -"
V = V (f(x
0
)) ' -
"
U # U = f
;
1
(
V ).
2
1.22.
%#
X = F
1
F
2
, "
F
1
F
2
| ,
f : X
!
Y . -" f
& " # ", "
f
j
F
1
:
F
1
!
Y f
j
F
2
:
F
2
!
Y &.
1.23.
%#
f
n
:
X
!
R
| & 87, .
f -
X. -" f &.
1.24.
%#
X Y | ' &. 3#, ' f :
X
!
Y & ' x
0
0 . &"'-
. & " # ", " 0 &#
f
x
n
g
lim
n
!1
x
n
=
x
0
lim
n
!1
f(x
n
) =
f(x
0
).
1.25.
,
f : X
!
Y
4,
1)
f | 7
2)
f f
;
1
&.
3
1.26.
% & " &" , -
" "8.
1.27.
5
%
. -
B
, '
{ & . 9.
1.28.
: # &# &-
B
1
, ' # . &#. 90 &'# -
&" ?
1.29.
%# (
X
X
) (
Y
Y
) | &"' &. <-
X
Y &":
B
:=
f
V
W
j
V
2
X
W
2
Y
g
:
%' &"' &
!
!
X Y .
1.30.
%# ( &# &0 '), '
X
Y 0-
# &"' &.
1.31.
3#, '
X
Y Y
X "8.
1.32.
3#, ' (
X
Y )
Z X
(
Y
Z) "8.
1.33.
%# (
X
X
) (
Y
Y
) | ' &. ,&
X
Y :
max
((
x
1
y
1
)
(x
2
y
2
)) := max
f
X
(
x
1
x
2
)
Y
(
y
1
y
2
)
g
2
((
x
1
y
1
)
(x
2
y
2
)) :=
q
2X
(
x
1
x
2
) +
2Y
(
y
1
y
2
)
+
((
x
1
y
1
)
(x
2
y
2
)) :=
X
(
x
1
x
2
) +
Y
(
y
1
y
2
)
:
3#:
1) = 5 .
2) = &"
X
Y &.
1.34.
3#, ' & &0 (
ab), ab) ab] "-
8.
1.35.
-&"' &
X
,
& . (', 5.) 0:
%
X & 9 . &.
&. . .
%
X & & A, & X -
.
%
X & 9 . &.
&. . . .
/ & '
X
.
1.36.
%
X
%
,
-
. . '
x
0
x
1
2
X & (
)
f : 01]
!
X, f(0) = x
0
,
f(1) = x
1
.
1.37.
,
ab]
R
0 .
4
1.38.
X =
S
X
,
'!
X
,
T
X
6
=
.
!
X
.
.
%#
X , X = A
B, A
\
B =
,
A B | &
-. -"
X
= (
X
\
A)
(
X
\
B). % &
70 &" 5 -
X
. %#
X
, . &. 1',
X
7
A, B, &. % 5, A B &, X
9
X
, . &
X
A
B. 1',
T
X
=
. %'.
2
1.39.
%
X
!%
%#&
!&
x
y
!
P
xy
,
&
!'..
!
X
.
.
%#
X , X = A
B, A
\
B =
,
A B | &
-. -" 0
a
2
A, b
2
B P
ab
. -"
P
ab
= (
P
ab
\
A)
(
P
ab
\
B). ? - P
ab
& (&
a, | b). %' # P
ab
.
2
1.40.
, " & & & -
.
1.41.
6
.
.
% &0 '
f(01]) , " f = f
x
0
x
1
| &-
00 . %
P
x
0
x
1
:=
f(01]), &##
0 1.39.
2
1.42.
% & ", 0 " &.
1.43.
-&"' &
&!4,
.
xy
2
X, x
6
=
y, 0 U(x) U(y), '
U(x)
\
U(y) =
.
1.44.
% & .8 &"'" &.
1.45.
3#, ' & .8. &
.8.
1.46.
3#, ' .8 & ' -
.
1.47.
-&"' &
X
%,
.8 . . &. .
F
1
F
2
&
U
1
F
1
U
2
F
2
.
1.48.
/ ' & #.
1.49.
%
f
V
g
2
B
%
( , ')
f
U
g
2
A
, "
0 = (), ' V
U
.
1.50.
X
|
%
%
,
f
U
i
g
Ni=1
|
.
!
.
#%
%
!
V
i
,
V
i
U
i
.
5
.
<
F
1
=
X
n
N
i=2
U
i
!
U
1
e
F
1
=
X
n
U
1
#
V
1
F
1
e
V
1
e
F
1
V
1
\
e
V
1
=
:
-"
V
1
\
e
F
1
=
V
1
V
1
(
X
n
e
F
1
) =
U
1
(
V
1
U
2
:::U
N
) | &. 3,
U
2
V
2
. .
2
1.51.
%#
f : X
!
X | & .8 &-
. 3#, ' &. '
F
f
:=
f
x
2
X
j
f(x) = x
g
.
1.52.
3#, '
X .8 " # ", " "#
B :=
f
(
xy)
j
x = y
g
X
X X
X.
1.53.
:
#
1.54.
(%
& )
X
|
%
%
,
F
0
F
1
|
.
'.
!
.
4*
f : X
!
0
1]
,
f
j
F
0
= 0
,
f
j
F
1
= 1
.
.
C # , ' " "
F "
U, F
U 0 " # V , , ' F
V
V
U,
' '#
V
U.
,&
V
q
'-7#.
q 70 & &
(. . ' 0 1, & 1/2, & 1/4 3/4, & 1/8, 3/8,
5/8, 7/8 ). %
V
0
V
1
&
,
F
0
F
1
, & & #-
. %#, & && 7,
V
q
& 2
k
q.
<
F := V
i
2
k
U := V
i
+1
2
k
" &
V
2
i
+1
2
k
+1
:=
V , 8" F U '
#.
%'
V
q
& &, &'
1)
F
0
V
0
,
2)
V
1
(
X
n
F
1
),
3 )
q
1
< q
2
,
V
q
1
V
q
2
.
,& "
s
2
0
1]: V
s
:=
S
q
s
V
q
. -"
V
s
"
s (
9 .) 1 { 3 . 30#, 1 2 ',
3 ", ' ' 0 '-
7#..
6
-&# & 87
f : X
!
0
1], & f
j
F
0
= 0
f(x) := sup
f
s
j
x
62
V
s
g
. %, '
f &. %# x
0
" > 0 &#. %# s
0
=
f(x
0
).
<
U(x
0
) :=
V
s
0
+
"
4
n
V
s
0
;
"
4
:
? 0# #
x
0
, &' "
x
2
U(x
0
)
x
2
V
s
0
+
"
4
x
62
V
s
0
;
"
4
'
s
0
;
"
4
f(x)
s
0
+ "4
j
f(x)
;
f(x
0
)
j
"
2 < ":
2
1.55.
1 & " &
9 &.
1.56.
(- -7 &) %#
X | # &"-
' &,
f : F
!
R
| & 87. -"
f &
&0 87
g : X
!
R
. +
f "', g #
"'0 0 0.
1.57.
7%
4*
f : X
!
R
supp
f :=
f
x
2
X
j
f(x)
6
= 0
g
:
1.58.
X
|
%
%
,
f
U
g
|
.
!
.
4*
:
X
!
0
1]
R,
1)
supp
U
,
2)
P
(
x)
1
.
-
4*
,
f
U
g.
1.59.
3' #0 '
f
U
g
: 0 ' -
#, & H# ' '
f
U
g
.
.
2" 1.50 0 &
W
V
U
.
% J & 87
:
X
!
0
1]
j
W
1
j
(
X
k
)
0
:
- , supp
V
U
,
j
W
> 0. % :=
P
. ? '
&. 870 , , & 87. %#
f
W
g
| &,
> 0 W
,
> 0. 1', &#
:=
. ,', ' &.
2
1.60.
-&"' &
X
,
" " " & # ' &&.
1.61.
3#, '
ab] &.
1.62.
3#, ' & &" &
&.
1.63.
3#, ' & & .8 &-
.
7
1.64.
8
&!4
%.
.
%#
F
X x
62
F. %, '
&
U(x) V (F). / .8 " y
2
F 0 V
y
U
y
, '
V
y
\
U
y
=
. ,
V
y
&
F,
" # ' &&
V
y
1
:::V
y
N
,
F &
(. ' 1.62). %
V (F) := V
y
1
:::
V
y
N
U(x) :=
N
\
j=1
U
y
j
:
%# &#
F
1
X F
2
X | . % &0 ' #
& "
x
2
F
1
&
U(x)
x
V (x)
F
2
. -"
f
U(x)
g
| &
F
1
, " #
' &&
U(x
1
)
:::U(x
n
). (
n
S
i=1
U(x
i
)
n
T
i=1
V (x
i
) |
&
F
1
F
2
.
2
1.65.
3#, ' &0 & &.
1.66.
%#
f : X
!
R
1
| & 87 & &-
X. -" f "' & #H #H '.
1.67.
%#
X | ' &, "
5:
1)
X &
2) &##
f
x
n
g
X . &&#-
#
3) &## . &. .
f
F
n
g
(. .
F
n
F
n+1
) & &'.
1.68.
3 & &. & -
&.
2.
2.1.
9%!
#
&# .8
&"' &
M,
%!
%,
. . &-
f
U
g
"8
'
, .
U
&-
V
R
m
(
m # dimM " M). , -
U
%%
!
. % 5 , '
!
'
'
;
1
:
'
(
U
\
U
)
!
'
(
U
\
U
) " {87,
R
m
.
9%!
-
#0 "0 .
2.2.
+ # ", "
-
%.
8
2.3.
% & " " " -
, . . " (
U
i
'
i
) (
V
j
j
), '
f
(
U
i
'
i
)
(V
j
j
)
g
" .
2.4.
3#, '
S
n
R
P
n
" ".
2.5.
K " " "7 #
(&
R
2
) ?
2.6.
2
n- "
%-%-
,
87 &-'.
2.7.
3#, '
S
2
| &-' ".
2.8.
L7
f : M
!
R
%!,
0
'
P
2
M 0 (U
'
), 0
P, 87 f
'
;
1
:
V
!
R
,
R
m
, "0.
2.9.
3#, ' " & H 0
"# & H 0.
2.10.
M&
f : M
!
N ". "-
0
%!,
0 '
P
2
M . (U
'
),
0
P, (U
0
'
0
), 0
f(P), (5 M N, )
'
0
f
'
;
1
:
V
!
V
0
R
n
,
R
m
%%
!%
!
f, ". 1#
dim
M = m dimN = n.
2.11.
3#, ' " & H 0 &
"# & H 0.
2.12.
K "
f : M
!
N ". "-
0
!444,
f
;
1
".
2.13.
%#, ' 8
y
k
=
x
k
q
"
2
;
(
x
1
)
2
;
(
x
2
)
2
;
:::
;
(
x
n
)
2
k = 1:::n
x
k
=
y
k
q
"
2
+ (
y
1
)
2
+ (
y
2
)
2
+
::: + (y
n
)
2
k = 1:::n
888
B
"
(0)
R
n
R
n
.
2.14.
% & "" "8, " 8-
88.
#
2.15.
7
%#
%!
#
M
.
%
,
!444
:
(
!
!
2.13
R
m
:)
.
%# (
U
'
) | 0
M. 3 0 x
2
M
U
(x)
3
x. %# "(x) # , ' B
"(x)
(
'
(x)
(
x))
V
(x)
R
m
. -"
(
e
U
x
e
'
x
)
x
2
M
e
U
x
:=
'
;
1
(x)
(
B
"(x)
(
'
(x)
(
x)))
e
'
x
:=
'
(x)
j
e
U
x
| 0 .
2
2.16.
3 " '" &" " -
&' 7, &# #.
9
2.17.
%
%#
%
#
M
.-
!
%!
#
!*.
.
% " , ' ' &#
7 " #' ." . / ' " #'-
(0 2.15 1.50) 0 (
W
),
'
(
W
) =
B
1
(0)
R
m
W
"
:=
;
1
(
B
1
;
"
(0)) | &
M:
,& " 87
R
m
:
h(x) :=
(
e
;
1
(k
x
k;(1;
"=
2)
2
)
2
&
k
x
k
< (1
;
"=2)
2
,
0
&
k
x
k
(1
;
"=2)
2
.
-"
supp
h
B
1
;
"=2
(0)
0
h(x)
1
h(x) > 0 B
1
;
"
(0)
:
%
:=
(
h(
(
x)) & x
2
W
,
0
&
x
62
W
.
-"
2
C
1
(
M), 0
1, supp
W
> 0 W
"
. 1',
:=
P
> 0,
:=
= | C
1
- 7.
2
2.18.
f :
R
n
!
R
|
%!
4*,
grad
f
6
= 0
M = f
;
1
(
y
0
)
.
!
M
|
%!
#.
/
%%-
&
!
'
n
;
1
x
1
:::x
n
.
.
% 0 87. C, &#
~x
0
= (
x
1
0
:::x
n
0
)
2
M
grad
~x
0
=
@f
@x
1
::: @f
@x
n
!
~x
0
6
= ~0
:
K "' '#, '
@f
@x
n
~x
0
6
= 0. % 0
87 0 #
V ' (x
10
:::x
n
;
1
0
)
R
n
;
1
, (
x
n0
;
"x
n0
+
")
2
R
1
C
1
-87
g : V
!
R
1
, '
1)
f(x
1
:::x
n
;
1
g(x
1
:::x
n
;
1
))
0
V ,
2)
g(x
10
:::x
n
;
1
0
) =
x
n0
,
3)
g(x
1
:::x
n
;
1
)
2
(
x
n0
;
"x
n0
+
") & (x
1
:::x
n
;
1
)
2
V ,
4) ' (
x
1
:::x
n
)
2
M
\
(
V
(
x
n0
;
"x
n0
+
"))
x
n
=
g(x
1
:::x
n
;
1
).
10
,& :
U := M
\
(
V
(
x
n
0
;
"x
n
0
+
")) ' : U
!
R
n
;
1
'(x
1
:::x
n
) := (
x
1
:::x
n
;
1
)
2
V:
-", & 1) 3 )
'
'
;
1
(
x
1
:::x
n
;
1
) = (
x
1
:::x
n
;
1
g(x
1
:::x
n
;
1
))
:
%, ' &'0 ". %#, "' -
, (
U') ' ~x
0
(
e
U
e
'), "
e
' : (x
1
:::x
n
)
7!
(
x
2
:::x
n
). -"
V
\
e
V
e
''
;
1
(
x
1
:::x
n
;
1
) =
e
'(x
1
:::x
n
;
1
g(x
1
:::x
n
;
1
)) = (
x
2
:::x
n
;
1
g(x
1
:::x
n
;
1
))
| " .
2
2.19.
(
'
)
8-
%
' P
2
M " M ,
0 (
U
'
) (#0 (
x
1
:::x
n
)) -
P ' (
1
:::
m
). % 5 & -
0 , 0 ',
#. . C, (
U
'
) (#0 -
(
x
1
:::x
n
)) ' (
1
:::
m
),
i
= @x
i
@x
j
j
" & & .
j & .
2.20.
(& &) %#
: (
;
11)
!
M | " -
. -"
: (
x
1
:::x
n
)
dx
1
dt :::
dx
n
dt
!
t=0
. 1# #0 (
x
1
:::x
n
)
(x
1
(
t):::x
n
(
t)).
2.21.
:0 #0 '
P ' &
& # 0 .
- , # &
T
P
(
M) ' -
0 & dim
M. % 5, ',
&7 #0 .
2.22.
(
'
&)
< "
1
: (
;
1
1)
!
M
2
: (
;
1
1)
!
M, -
:
i
(0) =
P
0 (#, 0) (
x
1
:::x
m
)
P & :
m
X
k=1
h
x
k
(
1
(
t))
;
x
k
(
2
(
t))
i
2
=
o(t
2
)
(
t
!
0)
:
11
-
.
:
1
2
.
/ , & , &-
.. ?
%
M ' P.
2.23.
(
'
((
-
*
+)
N0
D : C
1
(
M)
!
R
, . . 00 87
& ". 870,
!44*
'
P
2
M,
' " & # ' 870
P, '-
,
fg
2
C
1
(
M) , ' f
g 0 U '
P, D(f) = D(g) (\& . 870")
& M#{N07
D(fg) = f(P)D(g) + g(P)D(f) . fg
2
C
1
(
M):
M 0 & 887
%
M '
P.
2.24.
%# (
x
1
:::x
n
) | #
P
2
M, P = (x
10
:::x
n0
),
2
T
P
M
i
. -"
f
7!
n
X
i=1
@f
@x
i
(
x
1
0
:::x
n
0
)
i
#0 & & 88-
7.
2.25.
)!%
/%,
,
$
%
!
!
$
$
!44*
%
'!
4
%&
%
&
-
!%.
.
( 5# &. .. / ' 2.20
' ( 0 ) &# '
1
2
, '
1
=
2
.
0 = lim
t
!
0
m
X
k=1
"
x
k
(
1
(
t))
;
x
k
(
2
(
t))
t
#
2
=
=
m
X
k=1
"
lim
t
!
0
(
x
k
(
1
(
t))
;
x
k
(
P))
;
(
x
k
(
2
(
t))
;
x
k
(
P))
t
#
2
1
=
2
.
2.26.
%#
f : M
!
N | " , P
2
M.
4-
4*%
(%
#')
f ' P
12
#. &
df
P
:
T
P
M
!
T
f(P)
N, & .
5. &, . & #" -
.
!&,
-.
%# (
U
M
'
M
:
U
M
!
V
M
R
m
) |
M -
P, (U
N
'
N
:
U
N
!
V
N
R
n
) |
N f(P), (x
1
:::x
m
)
(
y
1
:::y
n
) | # . N# &-
f, ', '
N
f
(
'
M
)
;
1
:
V
M
!
V
N
, #
& 870
y
1
=
f
1
(
x
1
:::x
m
)
:::y
n
=
f
n
(
x
1
:::x
m
)
:
%#
2
T
P
M (x
1
:::x
m
) -
(
1
:::
m
) (": 50 ), " &
& &" "
= (df
P
)
j
= @f
j
@x
i
i
( &) (
y
1
:::y
n
).
.
,
-.
,' '
] &. . 0 .
%
(
df
P
)
] := f
]:
,
-.
< & 887
' P
2
M.
-" ' & 887 (
df
P
)
87 g
2
C
1
(
N) -
80
((
df
P
)
)(g) := (g
f):
2.27.
3# 5# . &0 887.
2.28.
< "
f : M
!
N, f(P
0
) =
Q
0
.
-'
P
0
2
M
%
f, 887
df
P
0
:
T
P
0
M
!
T
Q
0
N
5&8 ( \"). -'
Q
0
2
N
%-
f, P
2
f
;
1
Q
0
"0 '0
f.
2.29.
f : M
!
N
,
Q
0
2
N
|
%
f
.
!
M
Q
0
:=
f
;
1
(
Q
0
)
%
%!
#,
dim
M
Q
0
= dim
M
;
dim
N
.
%%&
!
M
Q
0
'
(
m
;
n)
!
M
.
.
% 0 87.
2
2.30.
,
f : M
!
N
',
0 '
P
2
M 887 df
P
:
T
P
M
!
T
f(P)
N 8.
+ & 5
f : M
$
f(M) ', f(M) N, f(M)
%'.
13
2.31.
% & &", -'" ,
" .
2.32.
/, "8 ,
%'
%
%.
2.33.
3 &. "0 " #.
2.34.
%
L
M dimM = m,
%!
!-
#,
0 (
U
'
) "
M, '
f
U
\
L
g
| "0
L , '
'
j
U
\
L
:
U
\
L
!
V
\
R
l
R
l
R
m
:
?
%.
- , dim
L = l, (m
;
l)
.
= 7 #
L.
2.35.
% & " , ' &-
" ( ").
2.36.
!'
A
N
%
!#
!
%
!,
!
%
#
#
M
%'
%
%.
.
+
A
N &",
"8 , & & &"
| &".
,, &#
f : M
!
N | # " . 20 # &-
" #0 .: ' # &-
f
N
i
g
N A, A
i
=
A
\
N
i
. ? 0 #
C
1
-
888:
A
N &" " #
", "
g(A)
N
0
&", "
g : N
!
N
0
| 88-
8. < 0 R =
f
i
:
N
i
!
R
n
g
"
N, &-
.
A. %# S =
f
'
i
:
M
i
!
R
m
g
i
2
| 0
M, ' f
i
(
M
i
)
N
i
(
, 7). %#
f , ', "-
8 , # S R , '
f(M
i
) =
A
\
N
i
. -"
# 888 7 0.
U :=
f
V
i
g
=
'
i
(
M
i
)
R
m
,
f = f
i
=
i
f'
;
1
i
:
U ,
!
R
n
|
C
1
-. -
#, '
f(U) | &". M 5 & 0 8-
7. C, # (
x
i
1
:::x
i
m
), 1
i
1
:::
i
m
n, "
g :
R
mx
!
R
n
;
m
x
, ' 5 "8. - ,
R
n
(
x
i
1
:::x
i
m
x
j
1
;
(
g(x
i
1
:::x
i
m
))
j
1
:::x
j
n
;
m
;
(
g(x
i
1
:::x
i
m
)))
&', '
f(U) "&&#. %'-
, ' # ' # # " , ' #-
.
2
2.37.
( &- H# & '# (0
1)
f
0
g
R
2
&". %# '#.
14
2.38.
(#
/)
(#
!%)
f : M
!
N
|
%!-
#',
M
N
|
#.
!
'
G
N
%&
f
|
!
%
'.
2.39.
M& &" &
.8 "8.
2.40.
(/-
+
%
)
M
|
%!
-
#.
!
!
%
%
p
,
.
%'
(
%
%)
f : M
!
R
p
.
.
%#
f
U
g
L=1
| '0
M, (x
1
:::x
m
) | #
U
, &'
'
:
U
B
=
B
1
(
a
)
R
m
, "
B
r
(
b) | H
r 7 b. %# B
"
:=
B
1
;
"
(
a
), &'
f
U
"
:=
'
;
1
(
B
"
)
g
&-&
&
M ( #). / &#
f
2
C
1
(
R
m
)
f
1
B
"
supp
f
B
:
%#
g
k
:
M
!
R
&
k = 1:::m = 1:::L 8
g
k
(
P) :=
(
f
(
'
(
P))x
k
&
P
2
U
0
&
P
62
U
.
% 5 &
g
k
(
P) = x
k
(
P) & P
2
U
"
. - ,
m
L 870
g
k
C
1
-
g : M
!
R
m
L
:
,& &#
' : M
!
R
N
=
R
m
L+L
'(P) := ( g(P)
|
{z
}
m
L
f
(
'
(
P))
|
{z
}
L
)
:
-" rk
'
rk
g. + P
2
U
"
,
rk
g
j
P
rk
@g
k
(
P)
@x
j
!
rk
@x
k
(
P)
@x
j
!
=
m:
%# & rk
'
m, rk'
m. ( &, '
' | &".
-&# , '
' 9, . . 70 . %#
P
6
=
Q. -" 0 0 , ' P
2
U
"
, #,
f
(
'
(
P)) = 1.
+ & 5
f
(
'
(
Q)) < 1, , f
(
'
(
Q)) = 1, Q
2
U
,
'
g
k
(
P) = x
k
(
P), g
k
(
Q) = x
k
(
Q). %# P
6
=
Q, 0
x
k
0
(
P)
6
=
x
k
0
(
Q), ' g
k
0
(
P)
6
=
g
k
0
(
Q) '(P)
6
=
'(Q).
-
M &, '(M)
R
N
.8, & ' 2.39
'
"8 , #, # .
2
2.41.
(/
+
%
)
(#
!%)
!!.
'
p = 2
dim
M + 1
.
.
C # , ' "-
, & & 0 && #H0 -
, &# #. 2 && 0 &
2.
2
15
3.
3.1.
%# dim
M = m. ,& N = T
M {
#
%-
&
/%
%
%
M. N &
(
P), " P
2
M,
2
T
P
M, . . #0 . -&"
" & & . 0 . &-
N &
R
2
m
, 9 "8
( ' dim
N = 2m). C, (U') { # M,
' " &
N & (P) P
2
U,
'
R
2
m
S:
S(
P) = (x
1
:::x
m
1
:::
m
)
"
'(P) = (x
1
:::x
m
)
=
1
@
@x
1
+
::: +
m
@
@x
m
. .
#0 & (x
1
:::x
m
)
i
. -" &. & &. 0 0 "0 -
& &0 "&& &. ,
M, & 0 { &
& 7 T &0 "&&. / ', ".
3.2.
+
M " " C
k
,
T
M | "-
C
k
;
1
.
4.
/ ':
R
n
+
R
n
R
n
+
:=
f
(
x
1
:::x
n
)
2
R
n
j
x
n
0
g
R
n
;
1
0
:=
f
(
x
1
:::x
n
)
2
R
n
j
x
n
= 0
g
:
% 887# &0 87
f :
R
n
+
!
R
1
&-
# . 3 . ' (
x
n
> 0) . ' &. 3
"'. ' (
~x
0
2
R
n
;
1
0
) # &
f(~x) = f(~x
0
) +
n
X
i=1
f
i
(
x
i
;
x
i
0
) +
o(~x
;
~x
0
)
lim
~x
!
~x
0
xn
0
o(~x
;
~x
0
)
k
~x
;
~x
0
k
= 0
:
-"
f
i
=
@f
@x
i
(
~x
0
)
(i = 12:::n
;
1),
f
n
= lim
h
!
+0
f(x
10
:::x
n
;
1
0
x
n0
+
h)
;
f(x
10
:::x
n
;
1
0
x
n0
)
h
(1)
( ' &).
4.1.
2&# .8 &"' &
M
#
,
" &
16
f
U
g
"8
'
:
U
!
V
R
n
+
, "
V
R
n
+
| -
, 87
'
'
;
1
:
V
=
'
a
(
U
\
U
)
!
V
=
'
b
(
U
\
U
)
" .
M '
P
2
M
,
x
n
(
P) > 0
,
x
n
(
P) = 0.
#
4.2.
)!%
&
&
#
%%
!.
.
3& &:
P
2
M 7
# (
x
1
:::x
n
) (
y
1
:::y
n
)
R
n
+
x
R
n
+
y
, &'
x
n
(
P) > 0, y
n
(
P) = 0. - , (x
1
:::x
n
) "-
8
U
3
P V
R
nx
, (
y
1
:::y
n
) | ~
V
R
n
+
y
(&. &', ' "8 0 -
). / 87 &., . . "0 "8
' : V
!
~V,
y
k
=
'
k
(
x
1
:::x
n
), &'
1)
y
n
=
'
n
(
x
1
:::x
n
)
0,
2)
y
n
(
P) = '
n
(
x
10
:::x
n0
) = 0,
. .
y
n
=
'
n
' (
x
10
:::x
n0
). -
V
R
n
+
x
,
(
x
10
:::x
n0
) | , # & #" 5:
@'
n
@x
i
(
x
1
0
:::x
n
0
)
= 0
(
i = 1:::n):
M " det
@'
n
@x
i
(
x
1
0
:::x
n
0
)
= 0 "" ", &#
& 0 '0 &0 (1) & # &
887 ( 7 T).
2
4.3.
M
*
@M " M
" "'. '.
4.4.
8
%
#
!*
:
.
.
/ ' # "' 0.
2
4.5.
%# & . 0.
4.6.
8
@M
#
M
%
-
#.
.
%#
f
U
(x
1
:::x
n
)
g
M (x
n
0) -
, det
@x
i
@x
j
n
ij=1
> 0. M @M # W
=
U
\
@M #
(
x
1
:::x
n
;
1
). %, ' , . .
17
0
P
2
W
\
W
& det
@x
i
@x
j
n
;
1
ij=1
> 0. %# W
\
W
x
n
=
x
n
0,
@x
n
@x
i
0,
i = 1:::n
;
1. - , '
P
0
< det
@x
i
@x
j
n
ij=1
= det
@x
i
@x
j
n
;
1
ij=1
@x
n
@x
n
:
(2)
/ '
P
@x
n
@x
n
= lim
h
!
+0
x
n
(
x
1
(
P):::x
n
(
P) + h)
;
x
n
(
x
1
(
P):::x
n
(
P))
h
=
= lim
h
!
+0
x
n
(
x
1
(
P):::x
n
(
P) + h)
h
:
%# &# &#, & 7, &-
#, (2), 0, &:
@x
n
@x
n
P
> 0. -" (2)
&', ' det
@x
i
@x
j
n
;
1
ij=1
> 0.
2
!
4.7.
, : ( , 0
S
1
.
5.
5.1.
"
M -
g, 0 #0 (x
1
:::x
m
)
U
&-
". 870
g
ij
:
U
!
R
, &'
1) 0 '
x
2
U 7
k
g
ij
k
| ' () &-
# &
2) & 0 : 87
g
kl
, '
(
x
1
:::x
m
), 0 ' &' .
0
g
kl
=
g
ij
@x
i
@x
k
@x
j
@x
l
(& & | ).
% (
Mg)
#.
5.2.
% ' &# 0 '
P
2
M
# 0 .
5.3.
% "-
H '.. ( '# # (
U'),
(
U
0
'
0
), (
U
00
'
00
) . ., | (
x
1
:::x
m
), (
x
1
0
:::x
m
0
),
(
x
1
00
:::x
m
00
) . . - , #, '
x
i
0
5
x
0
i
0
.
18
: ", & , & . , &#
. / 5. '. & -
0 & :
i
0
=
i
@x
i
0
@x
i
g
i
0
j
0
=
g
ij
@x
i
@x
i
0
@x
j
@x
j
0
:
#
5.4.
!
%
!
%&
-
~~
2
T
P
M
4%
h
~~
i
:=
g(~~) := g
ij
i
j
:
.
/ :
g
ij
i
j
=
g
i
0
j
0
i
0
j
0
,
& & & & 0 & &-
#" .
2
5.5.
% 5 .
5.6.
5%
4
1).
5.7.
%#
f : N
!
M | " , g | 0
8 (#. . )
M. ,& '
#
#
f
g . ~~
2
T
P
N 80
(
f
g)(~~) := g((df
P
)~
(df
P
)
~):
/ . &# 0 &. %#
(
x
1
:::x
n
) |
P, (y
1
:::y
m
) |
f(P),
(
f
1
(
x
1
:::x
n
)
:::f
m
(
x
1
:::x
n
)) | &#
f. --
" ( . (
x
1
:::x
n
))
(
f
g)
ij
:=
g
kl
@f
k
@x
i
@f
l
@x
j
:
5.8.
%# "# 5. . &0.
5.9.
3#, '
i : N
!
M | &" ( ', ),
g | M, i
g | N. %' 5
&#" ?
5.10.
%#
i : N ,
!
M | ' &" N -
" (
Mg). -" i
g
!*
0 -
0 &"
N.
5.11.
7
#
M
.
-
.
.
%#
F : M
!
R
p
| J. -"
F
g
R
p
|
M.
2
5.12.
3# 5 &# 7 (
J).
19
6.
!
:
#
6.1.
%
& (
pq) " p + q " M
n , & 0 -
(
x) = (x
1
:::x
n
)
n
p+q
". 870
T
i
1
:::i
p
j
1
:::j
q
, .
-
,
&' . (
x) (x
0
) ( 0 #) -
&
T
i
0
1
:::i
0
p
j
0
1
:::j
0
q
=
T
i
1
:::i
p
j
1
:::j
q
@x
i
0
1
@x
i
1
::: @x
i
0
p
@x
i
p
@x
j
1
@x
j
0
1
::: @x
j
q
@x
j
0
q
:
6.2.
%#, ' & (1
1), 0 # -
"#. , &&7
ij
.
6.3.
%#, ' #0 , 0 -
# &#. , .
6.4.
M0 0 '0 , "
# � .
6.5.
/# 7 # . &70.
6.6.
/# 7 # . &-
70.
6.7.
3# &# . 8 & ' -
& 7:
det(
AB) = detA
det
B:
6.8.
/# 5887 "' det(
A
;
E) #
. &70 .
6.9.
3#, ' '
C
ii
,
C
ij
C
j
i
,
C
ij
C
j
k
C
ki
, ' 58-
87 "' det(
C
;
E) .
6.10.
M0 # , & " # 5887-
1) " &,
2) H" &
R
3
. %#, ' 5 &' " " & &-
& .
6.11.
%#
X # (10), W { (01). M0 " &
X
W.
6.12.
- & & (0
1)
.
2" ' H
dx
i
= grad
x
i
.
6.13.
/ ' 87 ..
6.14.
K
f
@
@x
i
g
T
P
M
f
dx
j
g
T
P
M 0.
<
C
1
(
M)-0 L(v
1
:::v
q
a
1
:::a
p
)
q
.
p . &0, & ' C
1
(
M). <
T
7!
L
T
L
T
(
v
1
:::v
q
a
1
:::a
p
) :=
T
i
1
:::i
p
j
1
:::j
q
v
j
1
1
:::v
j
q
q
a
1
i
1
:::a
p
i
p
20
L
7!
T
L
T
L
: (
x
1
:::x
n
)
(
T
L
)
i
1
:::i
p
j
1
:::j
q
:=
L( @
@x
j
1
::: @
@x
j
q
dx
i
1
:::dx
i
p
)
:
6.15.
1)
L
T
& .
2)
T
L
0# (
pq)- .
3) ? .
6.16.
%# . & & (
pq): T S. ,&
&
T + S,
T S, &"
(
T + S)
i
1
:::i
p
j
1
:::j
q
:=
T
i
1
:::i
p
j
1
:::j
q
+
S
i
1
:::i
p
j
1
:::j
q
:
#
6.17.
;
!%
(
pq)
.
.
1
#.
M &# 0 .
6.18.
%0 .
2
#.
2 . &0. 0
L
T
+
L
S
&0-
" &,
L
T+S
.
2
6.19.
+
T
i
1
:::i
p
j
1
:::j
q
| &
M, f
2
C
1
(
M), ,
', &
!
87
f
T :
(
x
1
:::x
n
)
f
T
i
1
:::i
p
j
1
:::j
q
.
6.20.
%
S & (pq) &' & T & (pq)
-
&&
(. | "')
!
a b, S
i
1
:::i
a
:::i
b
:::i
p
j
1
:::j
q
=
T
i
1
:::i
b
:::i
a
:::i
p
j
1
:::j
q
.
3# ", ' &' &, ', -
&0 .
6.21.
%# &, ' & ." "
0 &70. <# '0 & (1
1) (0-
" &). %'# ', ' & ' &
C
ij
=
C
j
i
.
6.22.
-
T & (pq) & . -
a b S & (p
;
1
q
;
1),
&0
S
i
1
:::i
p
;1
j
1
:::j
q
;1
:=
X
i
T
i
1
:::i
a
;1
ii
a
:::i
p
;1
j
1
:::j
b
;1
ij
b
:::j
q
;1
:
? 0# & & (
p
;
1
q
;
1), &#
L
S
(
v
1
:::v
q
;
1
a
1
:::a
p
;
1
) =
=
X
i
L
T
(
v
1
:::v
a
;
1
@
@x
i
v
a
:::v
q
;
1
a
1
:::a
b
dx
i
a
b+1
:::a
p
;
1
)
21
X
i
@x
i
0
@x
i
@x
i
@x
i
0
= 1
' & '# .
!
6.23.
2
C
ii
& (1
1) | 0" &.
6.24.
!
T
S . . &0 T &
(
pq) S & (rt) & & (p+rq+t), 80
(
T
S)
i
1
:::i
p
+
r
j
1
:::j
q
+
t
:=
T
i
1
:::i
p
j
1
:::j
q
S
i
p
+1
:::i
p
+
r
j
q
+1
:::j
q
+
t
:
2
L
T
S
# & & &0. 0,
# | &0 . ". -
,
T
S 0# &.
6.25.
%#
b
ij
| & & (0
2). %
# & det
k
b
ij
k
6
= 0.
6.26.
%# # 5" -
.
6.27.
3#, ' & 0 7
b
jk
, . . -
0
b
jk
b
ki
=
j
i
, & (2
0).
6.28.
,&7
!
!
T & (pq) & &-
b # &7 &70 " & b
ij
. %-
'
S & (p + 1q
;
1) M&, &" :
S
i
1
:::i
p
+1
j
1
:::j
q
;1
:=
b
i
1
i
T
i
2
:::i
p
+1
ij
1
:::j
q
;1
:
V"', & :
S
i
1
:::i
p
;1
j
1
:::j
q
+1
:=
b
j
1
i
T
ii
1
:::i
p
;1
j
2
:::j
q
+1
:
6.29.
,&
" &
T & (0q)
Sym(
T)
j
1
:::j
q
=
T
(
j
1
:::j
q
)
= 1q!
X
2
S
q
T
j
(1)
:::j
(
q
)
%
Alt(
T)
j
1
:::j
q
=
T
j
1
:::j
q
]
= 1q!
X
2
S
q
(
;
1)
T
j
(1)
:::j
(
q
)
:
,', ' 5 &7. %' & (-
., #) &
(.,
-
) , ' . & & & . -
(., & & . . ).
6.30.
3, ' # 0 ,
& ' , '-
" .
22
#
6.31.
8
%
T
i
1
:::i
n
M
,
dim
M = n
(.
.
%
%
%)
!%
%
!
(.-
)
T
12
:::n
.
)%
%
1
,
,
T
i
1
:::i
n
=
T
(12:::n)
= (
;
1)
T
12
:::n
:
-.
T
!
%
!
-
!
%
!'
!%%
*
<#
.
.
% '. 3,
T
1
0
:::n
0
=
T
i
1
:::i
n
@x
i
1
@x
1
0
::: @x
i
n
@x
n
0
=
X
(
;
1)
@x
(1)
@x
1
0
::: @x
(n)
@x
n
0
!
T
i
1
:::i
n
= det
@x
i
@x
i
0
T
12
:::n
:
N .
2
6.32.
,&
:
!
R = T
^
P . -
'.
T
i
1
:::i
k
P
i
1
:::i
q
80
R
i
1
:::i
k
+
q
=
T
i
1
:::i
k
P
i
k
+1
:::i
k
+
q
]
= 1
k!q!
X
2
S
k
+
q
(
;
1)
T
(i
1
:::i
k
P
i
k
+1
:::i
k
+
q
)
:
2 '# , 5 &7 " & #-
.
3 ' & (0
q) &#
887#. 8. -', & & H" ,
dx
i
1
^
:::
^
dx
i
q
= 1q!
X
2
S
q
(
;
1)
dx
(i
1
:::
dx
i
q
)
:
-" & &0 & :
T = T
i
1
:::i
q
dx
i
1
:::
dx
i
q
=
X
i
1
<:::<i
q
T
i
1
:::i
q
dx
i
1
^
:::
^
dx
i
q
:
? &# 887#0 8. - ,
(' &) 5 '.
6.33.
%, ' &' 8 H"
887#. 8 ' &# , , &-
& ( ' ) &'# 887.
6.34.
( 6.31) /
q
det
k
g
ij
k
dx
1
^
:::
^
dx
n
-
# &# . 1#
g
ij
| .
?
4
#$
. % & "
'# 9 ".
23
7.
#%%
&
7.1.
%, ' ' ' 887 & -
" &
R
n
0 &70.
Z &# . &.
R
n
&7 (
pq)
(
pq +
1), & . . ' 887.
3 5" & " &&# &# # '" 88-
7 ". ..
, ' '0 " &
T
i
. %#
x
i
|
R
n
,
x
i
0
| 0 . -"
0 &7
r
#
(
r
T)
ij
= @T
i
@x
j
(
r
T)
i
0
j
0
= @x
i
0
@xi
@x
j
@x
j
0
(
r
T)
ij
:
-"
(
r
T)
i
0
j
0
= @x
i
0
@xi
@x
j
@x
j
0
@
@x
j
@x
i
@x
k
0
T
k
0
!
=
= @x
i
0
@xi
@x
j
@x
j
0
@x
i
@x
k
0
@T
k
0
@x
m
0
@x
m
0
@x
j
+ @x
i
0
@xi
@x
j
@x
j
0
T
k
0
@
@x
j
@x
i
@x
k
0
!
=
=
i
0
k
0
m
0
j
0
@T
k
0
@x
m
0
+
T
k
0
@x
i
0
@x
i
@
2
x
i
@x
j
0
@x
k
0
,
(
r
T)
i
0
j
0
= @T
i
0
@x
j
0
+
T
k
0
;
i
0
j
0
k
0
;
i
0
j
0
k
0
= @x
i
0
@x
i
@
2
x
i
@x
j
0
@x
k
0
:
3 " &
T
i
# (
r
T)
ij
=
@T
i
dx
j
, (
r
T)
i
0
j
0
=
@x
i
@x
i
0
@x
j
@x
j
0
(
r
T)
ij
.
-"
(
r
T)
i
0
j
0
= @x
i
@x
i
0
@x
j
@x
j
0
@
@x
j
@x
k
0
@x
i
T
k
0
!
=
= @x
i
@x
i
0
@x
j
@x
j
0
@x
k
0
@x
i
@T
k
0
@x
m
0
@x
m
0
@x
j
+ @x
i
@x
i
0
@x
j
@x
j
0
T
k
0
@
@x
j
@x
k
0
@x
i
!
=
=
k
0
i
0
m
0
j
0
@T
k
0
@x
m
0
+
T
k
0
@
2
x
k
0
@x
j
@x
i
@x
i
@x
i
0
@x
j
@x
j
0
(
r
T)
i
0
j
0
= @T
i
0
@x
j
0
+
T
k
0
\;
k
0
i
0
j
0
\;
k
0
i
0
j
0
= @
2
x
k
0
@x
j
@x
i
@x
i
@x
i
0
@x
j
@x
j
0
:
#
7.2.
=
\;
k
0
i
0
j
0
=
;
;
k
0
i
0
j
0
.
.
%887
@x
i
0
@x
i
00
@x
i
00
@x
k
0
=
i
0
k
0
&
x
m
0
:
0 = @
2
x
i
00
@x
m
0
@x
k
0
@x
i
0
@x
i
00
+ @x
i
00
@x
k
0
@
2
x
i
0
@x
m
00
@x
i
00
@x
m
00
@x
m
0
= ;
i
0
m
0
k
0
+ \;
i
0
m
0
k
0
:
2
24
7.3.
7
M =
R
n
!%
*
r,
!.
%
T
i
1
:::i
p
j
1
:::j
q
4%
(
r
T)
i
0
1
:::i
0
p
j
0
1
:::j
0
q
m
0
= @
@x
m
0
(
T
i
0
1
:::i
0
p
j
0
1
:::j
0
q
) +
p
X
s=1
T
i
0
1
:::i
0
s
;1
r
0
i
0
s
+1
:::i
0
p
j
0
1
:::j
0
q
;
i
0
s
r
0
m
0
;
q
X
s=1
T
i
0
1
:::i
0
p
j
0
1
:::j
0
s
;1
r
0
j
0
s
+1
:::j
0
q
;
r
0
j
0
s
m
0
4*
;
#
%
;
i
00
j
00
k
00
= @x
i
00
@x
i
0
@x
j
0
@x
j
00
@x
k
0
@x
k
00
;
i
0
j
0
k
0
+ @x
i
00
@x
i
0
@
2
x
i
0
@x
j
00
@x
k
00
:
.
T0
r
"' -
. . &0.
7.4.
%0 5 .
M0 & ;.
r
k
0
T
i
0
:= (
r
T)
i
0
k
0
= @T
i
0
@x
k
0
+
T
r
0
;
i
0
r
0
k
0
r
k
00
T
i
00
= @T
i
00
@x
k
00
+
T
r
00
;
i
00
r
00
k
00
= @x
k
0
@x
k
00
@
@x
k
0
@x
i
00
@x
i
0
T
i
0
!
+ @x
r
00
@x
r
0
T
r
0
;
i
00
r
00
k
00
=
= @x
k
0
@x
k
00
@x
i
00
@x
i
0
@T
i
0
@x
k
0
+
T
i
0
@x
k
0
@x
k
00
@
2
x
i
00
@x
k
0
@x
i
0
+
T
r
0
@x
r
00
@x
r
0
;
i
00
r
00
k
00
:
2 "0 ,
r
k
00
T
i
00
= @x
k
0
@x
k
00
@x
i
00
@x
i
0
r
k
0
T
i
0
= @x
k
0
@x
k
00
@x
i
00
@x
i
0
@T
i
0
@x
k
0
+
T
r
0
;
i
0
r
0
k
0
!
:
%5
T
r
0
@x
k
0
@x
k
00
@x
i
00
@x
i
0
;
i
0
r
0
k
0
=
T
r
0
@x
k
0
@x
k
00
@
2
x
i
00
@x
k
0
@x
r
0
+
T
r
0
@x
r
00
@x
r
0
;
i
00
r
00
k
00
:
/ &# &
T
i
&'
;
i
00
r
00
k
00
= ;
i
0
r
0
k
0
@x
r
0
@x
r
00
@x
k
0
@x
k
00
@x
i
00
@x
i
0
;
@x
r
0
@x
r
00
@x
k
0
@x
k
00
@
2
x
i
00
@x
k
0
@x
r
0
:
: & & # 7.2,
;
@x
r
0
@x
r
00
@x
k
0
@x
k
00
@
2
x
i
00
@x
k
0
@x
r
0
= @
2
x
k
0
@x
r
00
@x
k
00
@x
i
00
@x
k
0
= @
2
x
i
0
@x
r
00
@x
k
00
@x
i
00
@x
i
0
:
2
7.5.
M " "
M
*
!44*
(
44
)
r
, 0
". 870 ;
ijk
, &. & & 8
;
i
0
j
0
k
0
= @x
i
0
@x
i
@x
j
@x
j
0
@x
k
@x
k
0
;
ijk
+ @x
i
0
@x
i
@
2
x
i
@x
j
0
@x
k
0
:
25
-" 0
r
(
r
T)
i
1
:::i
p
j
1
:::j
q
m
= @
@x
m
(
T
i
1
:::i
p
j
1
:::j
q
) +
p
X
s=1
T
i
1
:::i
s
;1
ri
s
+1
:::i
p
j
1
:::j
q
;
i
s
rm
;
q
X
s=1
T
i
1
:::i
p
j
1
:::j
s
;1
rj
s
+1
:::j
q
;
rj
s
m
7.6.
: & & , \
",
r
0 &70.
7.7.
2 0 # -
0 .
7.8.
;
ijk
, -
0 0 ]
ijk
= ;
ijk
;
;
ikj
.
#
7.9.
]
!%
%
%
(1
2)
.
7.10.
%#.
7.11.
2# ;
,
] = 0.
#
7.12.
-
r
#%!
1)
*
r
%"
2)
*
r
"
3)
!
4*
(
%
)
!
!:
r
k
f =
@f
@x
k
"
4)
*
r
&
&
%&
!
r
k
T
i
= @T
i
@x
k
+
T
j
;
ijk
r
k
T
i
= @T
i
@x
k
;
T
j
;
j
ik
5)
!%
%&
&
%
T
S
%
4%
6#*
r
(
T
S) = (
r
T)
S + T
(
r
S):
.
20 ', (5). % ", &
. &0.
r
k
(
T
i
S
j
) = @
@x
k
(
T
i
S
j
) +
T
r
S
j
;
irk
+
T
i
S
r
;
j
rk
=
= ( @
@x
k
T
i
)
S
j
+
T
i
@
@x
k
(
S
j
) +
T
r
S
j
;
irk
+
T
i
S
r
;
j
rk
=
= (@T
i
@x
k
+
T
r
;
irk
)
S
j
+
T
i
(@S
j
@x
k
+
P
r
;
j
rk
) =
= (
r
k
T
i
)
S
j
+
T
i
(
r
k
S
j
)
:
2
7.13.
%# 5 &#. &0.
26
7.14.
-
(1 { 5)
!
!
!44*-
.
,
!
!
#
4*
;
ijk
,
!%.
!%
,
!
r
%
%
#!
!
4%
'
!%.
.
,'
e
i
=
@
@x
i
e
j
=
dx
j
. -" 87 ;
ijk
' &# 8
r
k
e
i
= ;
j
ik
e
j
r
k
e
i
=
;
;
ijk
e
j
:
(3)
L &' " ", 0 (1 { 5) &', '
r
k
(
T
i
T
i
) = (
r
k
T
i
)
T
i
+
T
i
(
r
k
T
i
) =
=
@T
i
@x
k
+ ;
ijk
T
j
!
T
i
+
@T
i
@x
k
;
~;
j
ik
T
j
!
T
i
=
=
r
k
(
T
i
T
i
) + ;
ijk
T
j
T
i
;
~;
j
ik
T
j
T
i
|
{z
}
0
&# &0 ;
ijk
;
~;
j
ik
= 0.
1, ' & ;
ijk
7.3 &##
# H &. 4, ' & 50
0 .
,# 8 887 &#. &0. <-
'0 & & (1
1). %# #
T = T
ij
e
i
e
j
:
-"
r
k
T
lm
= (
r
T)
lmk
= (
r
T
ij
e
i
e
j
)
lmk
=
=
(
r
T
ij
)
e
i
e
j
+
T
ij
(
r
e
i
)
e
j
+
T
ij
e
i
(
r
e
j
)
l
mk
=
= @T
lm
@x
k
+
T
ij
(;
rki
e
r
)
e
j
l
m
+
T
ij
e
i
(;
j
rk
e
r
)
l
m
=
= @T
lm
@x
k
+
T
lr
;
rkm
+
T
lj
;
j
mk
:
2
7.15.
% '.
7.16.
V88 ' #
r
"-
(
Mg)
(
%
)
r
g = 0.
7.17.
/ 5 '
r
&7 & &
.
7.18.
7
#
(
Mg)
.,
!-
,
.
/
/44*
(%
84-
4%)
;
ijk
= 12 g
ir
@g
kr
@x
j
+ @g
jr
@x
k
;
@g
jk
@x
r
!
:
(4)
27
.
%, ' :88 0 -
# (4). - #. % &-
,
0 =
r
k
g
ij
= @g
ij
@x
k
;
g
rj
;
rik
;
g
ir
;
rjk
:
,& ;
ijk
:=
g
ir
;
rjk
7' & , &'
@g
ij
@x
k
= ;
jik
+ ;
ijk
@g
ki
@x
j
= ;
ikj
+ ;
kij
@g
jk
@x
i
= ;
kji
+ ;
jki
:
2 & ' . #. %', ' -
;
ijk
= ;
ikj
, '
@g
ij
@x
k
+ @g
ki
@x
j
;
@g
ki
@x
j
= ;
jik
+ ;
ijk
+ ;
ikj
+ ;
kij
;
;
kji
+ ;
jki
=
= ;
jki
+ ;
ijk
+ ;
ijk
+ ;
kji
;
;
kji
+ ;
jki
= 2;
ijk
= 2
g
ir
;
rjk
, 7
g
ij
,
;
rjk
= 12g
ir
@g
ij
@x
k
+ @g
ki
@x
j
;
@g
ki
@x
j
!
:
3 # ' &# 5887 -
&# 8 (4) (&# !).
2
7.19.
2
%!
,
g
ij
0 & ( #, 0 &
ij
).
2
%!
,
0 ;
ijk
0.
7.20.
3# 5# 5. 0.
8.
(
#)
%# & | & #. .
'.. M & | \& ", . . . '.
&.. + ' &# -
0 &0. ? H . %. # &-
, . . # " & & & \# 0".
% 5 #, ", 0, 7 .
%0 ' &.
%# "
M 88 #
r
. %# '
P Q
M "0 0 : 01]
!
M, (0) = P, (1) = Q. M 0
& 0
(& # & #"
).
28
8.1.
8
!
%
T
(
pq)
!%
&
r
_
(
T), & -
" & #" & 0 &0
T:
(
r
_
(
T))
i
1
:::i
p
j
1
:::j
q
:=
k
r
k
T
i
1
:::i
p
j
1
:::j
q
:
8.2.
/ &
T
%%%
!%
-
%
r,
r
_
(
T)
0.
1&H 5 #. . (
x
1
:::x
n
). +
(t) = (x
1
(
t):::x
n
(
t))
k
= dx
k
(
t)
dt
&
k
r
k
T
i
= dx
k
(
t)
dt
@T
i
@x
k
+
T
r
;
irk
!
= 0
dx
k
(
t)
dt
@T
i
@x
k
+
T
r
;
irk
dx
k
(
t)
dt =
dT
i
dt + T
r
;
irk
dx
k
(
t)
dt = 0:
8.3.
%
%%%
-
!%
.
1' &#" & " . 1 "-
, ' P Q " M #
r
,
v
2
T
P
M. M 0 0 w
2
T
Q
M, '
& &
V (t), &' V (0) = v V (1) = w. %# '
H# &# &#.
, 0 .
&. 0 0 , '#, '
0 0 .
/ ' H . 887#. -
0 &" & # 870
V
i
(
t) '# ' V
i
(0) =
v
i
,
H0 # &.. : , H 0 -
, &
Q, . . t = 1.
2,
w = V (1)
2
T
Q
M
%%%
v
2
T
P
M
!%
.
#
8.4.
(
Mg)
|
#.
-
44
r
M
%
!
%
!,
!
-
.
%%%
&
%
!
:
g
.
.
%#
r
| ,
h
::
i
| &, &-
g, V (t) W(t) | &, &#-
" & #
: 01]
!
M. M &#, '
d
dt
h
V (t)W(t)
i
0.
d
dt
h
V (t)W(t)
i
=
r
_
h
V (t)W(t)
i
=
k
r
k
g
ij
V
i
W
j
=
29
=
k
(
r
k
g
ij
)
V
i
W
j
+
k
g
ij
(
r
k
V
i
)
W
j
+
k
g
ij
V
i
(
r
k
W
j
) =
=
k
0
V
i
W
j
+
g
ij
(
r
_
V
i
)
W
j
+
g
ij
V
i
(
r
_
W
j
) = 0
:
,, 5 H & &#. &0 # 0,
&#.
, V W &
k
V
i
W
j
r
k
g
ij
= 0 (
)
r
k
g
ij
= 0
:
2
8.5.
%# & &# '{
". . &7 &0 & " 8".
8.6.
:
" M 880 #
r
-
!,
& 0 &# # 50
0:
r
_
(_
) = 0.
/ #. . (
x
1
:::x
n
) &'
dx
k
dt
r
k
i
= 0
i = 1:::n
"
i
=
dx
i
dt
. ,
dx
k
dt
@
@x
k
i
+ ;
irk
r
!
= 0
d
2
x
i
dt
2
+ ;
irk
dx
r
dt
dx
k
dt = 0
i = 1:::n:
(5)
#
8.7.
P
2
M
,
v
2
T
P
M
.
!
.
!
!
(t)
,
!%.
%
(0) = P
_
(t) = v
.
/
:
%!
%&
!&.
.
% & #. . '
P ' . "'0 H n .
887#. 0 " & '# '-
H ' " &0 0, H # -
H. &.. : , H # ,
" '#. ..
2
8.8.
+ "' & 0 ',
&.
8.9.
% &# & # "'0 -
0 " # &.
#
8.10.
("'0 :88)
%
#&
-
&
%
e
i
:=
@
@x
i
!
!
%
r
e
i
(
e
j
) = ;
rji
e
r
(-
%'
#).
=
%,
#
%
%%%
e
i
{
%
#
%'
&!
/44*
;
i
.
.
% &
(
r
e
i
(
e
j
))
r
= (
e
i
)
s
(
r
s
(
e
j
))
k
=
si
@(e
j
)
k
@x
s
+ ;
krs
(
e
j
)
r
!
=
30
=
si
@(
kj
)
@x
s
+ ;
krs
rj
!
=
si
;
krs
rj
= ;
kji
:
2
8.11.
,&# &7 &#" & 0 -
&. "'. . (&).
8.12.
(
Mg)
|
#.
%
'!
P
0
2
M
!
U
%
" > 0
,
%#
!
-
U
!
!
!
!%
:
"
.
/
!-
%!
&
*.
.
% 8.7 0
V ' (P
0
0)
" 0. 5
TM, 0
V =
f
(
Pv)
2
TM
j
P
2
U
k
v
k
< "
g
0
U ' P
0
, &# "
E : V
!
M
M
(
Pv)
7!
(
Pexp
P
(
v))
" exp
P
v ' (1) 0 "'-
0, .0
P & & v. / #, 1 &
"' (H 887#. 0) 0 0
v.
/'
E (P
0
0).
3 5"
(
x
1
:::x
n
v
1
:::v
n
) (
P
0
0) TM, " v = v
i @
@x
i
, -
(
x
11
:::x
n1
x
12
:::x
n2
)
U
U
M
M. 3 #"
dE :
@x
i1
@x
j
=
ij
@x
i1
@v
j
= 0
d
P
0
exp
P
0
(
v
t]) = d
v
dt
0
=
v
" & #" . - , 7
T
d
P
0
E
I
0
I
!
"
I | ' 7, .
. 1. - , & 0 87,
E 88-
8 #
V
0
' (
P
0
0)
2
TM #
W
0
' (
P
0
P
0
)
M
M. %. #H , '#,
'
W
0
=
U
0
U
0
, &'
U
0
H
" # g,
. . "# ., . 7 H
P
0
0 " '0
#H
"=2. -" U
0
| # '
P
0
. 30#, &#
P Q
| &# '
U
0
. < "'
, . '
P
0
& &
v, " (P
0
v) = E
;
1
(
PQ). -", & & E,
P
0
=
P (1) = Q. - , ' P Q "'0 .
,& "', & 0 , "
. 7
P Q. ,& . / 0 H ,
#" "'0 &, &5 & '
#" &0 #, ' 0
k
v
k
. -"
0
0 1 1
k
v
k
< ". ,# &# #. %#
P Q & "' #H ". -" H
31
0 ' '# & ,
5 ' #" ' #H
"
t, " (t) = Q,
&'
E.
2
8.13.
%#, ' ., . exp, ;
ijk
P
0
#.
9.
!
Z# &# ' # &#" &-
' &
i- &, & & j- & "
&. :' , &5 . ,-
, # # ( ').
/ 5 &"8 # &&"
,
. <-
&. 0 (
x
1
:::x
n
) 0
r
k
r
l
;
r
l
r
k
&
T
i
( ' # | & (1,2)). %'
r
l
T
i
= @T
i
@x
l
+
T
r
;
irl
r
k
r
l
T
i
= @
2
T
i
@x
k
@x
l
+ @T
r
@x
k
;
irl
+
T
r
@;
irl
@x
k
+ ;
isk
@T
s
@x
l
+
T
r
;
srl
!
;
;
slk
@T
i
@x
s
+
T
r
;
irs
!
(
r
k
r
l
;
r
l
r
k
)
T
i
=
=
T
r
@;
irl
@x
k
;
@;
irk
@x
l
!
+ @T
r
@x
k
;
irl
;
@T
r
@x
l
;
irk
+ @T
s
@x
l
;
isk
;
@T
s
@x
k
;
isl
+
T
r
;
isk
;
srl
;
T
r
;
isl
;
srk
=
=
T
r
@;
irl
@x
k
;
@;
irk
@x
l
+ ;
isk
;
srl
;
;
isl
;
srk
!
:
,'
R
iqkl
:= @;
iql
@x
k
;
@;
iqk
@x
l
+ ;
isk
;
sql
;
;
isl
;
sqk
(6)
&', '
(
r
k
r
l
;
r
l
r
k
)
T
i
=
T
q
R
iqkl
:
#
9.1.
A*
R
iqkl
#
(1
3)
.
.
3 " " &
T 87 (
r
k
r
l
;
r
l
r
k
)
T
i
,
#,
T
q
R
iqkl
, & & (1
2). %# R
iqkl
=
(
e
q
)
s
R
iskl
,
R
i
0
q
0
k
0
l
0
= (
e
q
0
)
s
0
R
i
0
s
0
k
0
l
0
= (
e
q
0
)
s
R
iskl
@x
k
@x
k
0
@x
l
@x
l
0
@x
i
0
@x
i
= (
e
q
0
)
s
0
@x
s
@x
s
0
R
iskl
@x
k
@x
k
0
@x
l
@x
l
0
@x
i
0
@x
i
=
=
s
0
q
0
@x
s
@x
s
0
R
iskl
@x
k
@x
k
0
@x
l
@x
l
0
@x
i
0
@x
i
=
R
iskl
@x
s
@x
q
0
@x
k
@x
k
0
@x
l
@x
l
0
@x
i
0
@x
i
=
R
iqkl
@x
q
@x
q
0
@x
k
@x
k
0
@x
l
@x
l
0
@x
i
0
@x
i
:
2
32
9.2.
L, &'0 & #, # 8-
: 5887 00
.
9.3.
-
R
iqkl
-
'0
r
.
#
9.4.
(
,
)
#-
M
%
%.
!
%
%!
!
!
-
.
.
+ , & &
. # :88, ', <.
2
%0 &
R.
9.5.
8
. &0
X Y
&
XY ] := X
i
@Y
k
@x
i
+
Y
i
@X
k
@x
i
:
3 '0
r
X
Y
k
;
r
Y
X
k
=
X
i
@Y
k
@x
i
+
Y
j
;
kji
!
;
Y
i
@X
k
@x
i
+
X
j
;
kji
!
=
XY ]
k
(7)
', &7 .
9.6.
,&
R(XY )Z :=
r
X
r
Y
(
Z)
;
r
Y
r
X
(
Z)
;
r
XY ]
(
Z):
, & &
X, Y Z '
&. / " & #" " & H &
, &H
R(XY )Z, R(XYZ).
9.7.
)#'
R
%.
-%!%,
!%
-
(1
3)
.
.
+
R | 0 . &0
' . &.,
e
T(XYZ!) := !(T(XYZ))
4-0 3. 1 " & ' 87..
- , '# &0.
-0# ' '. M. # -
" 87. 3, '
R(XY )(fZ) = f
R(XY )Z:
r
X
r
Y
(
fZ)
;
r
Y
r
X
(
fZ)
;
r
XY ]
(
fZ) =
=
r
X
((
r
Y
f)Z)+
r
X
(
f
r
Y
Z)
;
r
Y
((
r
X
f)Z)
;
r
Y
(
f
r
X
Z)
;
r
XY]
(
f)Z
;
f
r
XY ]
Z =
33
= (
r
X
r
Y
f)Z +
r
Y
f
r
X
Z +
r
X
(
f)
r
Y
Z + f(
r
X
r
Y
Z)
;
(
r
Y
r
X
f)Z
;
r
X
f
r
Y
Z
;
;r
Y
f
r
X
Z
;
f(
r
Y
r
X
Z)
;
r
XY ]
(
f)Z
;
f
r
XY ]
Z =
=
r
X
r
Y
f
;
r
Y
r
X
f
;
r
XY ]
(
f)
Z + f
(
r
X
r
Y
Z)
;
(
r
Y
r
X
Z)
;
r
XY ]
Z
=
=
f
R(XY )Z
& , &#
r
X
r
Y
f
;
r
Y
r
X
f
;
r
r
X
Y
f +
r
r
Y
X
f =
=
X
i
@Y
k
@x
i
@f
@x
k
+
X
i
Y
k
@
2
f
@x
i
@x
k
;
Y
i
@X
k
@x
i
@f
@x
k
;
Y
i
X
k
@
2
f
@x
i
@x
k
;
;
(
X
i
r
i
Y )
k
@f
@x
k
+ (
Y
i
r
i
X)
k
@f
@x
k
=
=
X
i
@Y
k
@x
i
@f
@x
k
;
Y
i
@X
k
@x
i
@f
@x
k
;
X
i
@Y
k
@x
i
+ ;
ksi
Y
s
!
@f
@x
k
+
Y
i
@X
k
@x
i
+ ;
ksi
X
s
!
@f
@x
k
=
=
;
ksi
X
s
Y
i
;
;
ksi
Y
s
X
i
@f
@x
k
= 0
' .
% &# H
R(fXY )Z = f
R(XY )Z. 1, '
(
r
fX
)
T = (fX)
k
r
k
T = f X
k
r
k
T = f
r
X
T
r
fX
=
f
r
X
fXY ] =
r
fX
Y
;
r
Y
(
fX) = f
r
X
Y
;
(
r
Y
f)X
;
f
r
Y
X = f
XY ]
;
(
r
Y
f)X:
%', '
R(fXY )Z =
r
fX
r
Y
Z
;
r
Y
r
fX
Z
;
r
fXY]
Z =
=
f
r
X
r
Y
Z
;
r
Y
(
f
r
X
Z)
;
r
fXY ]
Z +
r
(
r
Y
f)X
Z =
=
f
r
X
r
Y
Z
;
r
Y
(
f)
r
X
Z
;
f (
r
Y
r
X
Z)
;
f
r
XY ]
Z + (
r
Y
f)
r
X
Z = f R(XY )Z:
V"' , '
R(XfY )Z = f
R(XY )Z.
2
#
9.8.
)!%
/%.
.
3 . &0
e
i
=
@
@x
i
R(e
i
e
j
)
Z
k
=
r
e
i
r
e
j
Z
k
;
r
e
j
r
e
i
Z
k
+
r
e
i
e
j
]
Z
k
=
r
i
r
j
Z
k
;
r
j
r
i
Z
k
&#
r
e
i
Z
k
= (
e
i
)
m
r
m
Z
k
=
mi
r
m
Z
k
=
r
i
Z
k
,
r
i
e
j
;
r
j
e
i
= ;
lji
e
l
;
;
lij
e
l
= 0
(8)
r
X
Y
k
;
r
Y
X
k
=
XY ]
k
(9)
& (7) # '. % 0 &' #.
2
34
9.9.
( <)
1)
%
X
Y
:
R(XY )Z + R(YX)Z = 0
%
R
ijkl
+
R
ijlk
= 0
2)
'!
<#:
R(XY )Z + R(YZ)X + R(ZX)Y = 0
%
R
ijkl
+
R
iklj
+
R
ilkj
= 0
3)
!%
h
R(XY )ZW
i
+
h
R(XY )WZ
i
= 0
%
!&
R
ijkl
+
R
jikl
= 0
"
R
ijkl
=
g
ir
R
rjkl
4)
!%
h
R(XY )ZW
i
=
h
R(ZW)XY
i
%
!&
R
ijkl
=
R
klij
:
.
% 1) & & <-
.
2). / 0 ' &# (.) .
&0. % (8,9) . &0
R(e
i
e
j
)
e
k
+
R(e
j
e
k
)
e
i
+
R(e
k
e
i
)
e
j
=
r
e
i
r
e
j
e
k
;
r
e
j
r
e
i
e
k
;
r
e
i
e
j
]
e
k
+
+
r
e
j
r
e
k
e
i
;
r
e
k
r
e
j
e
i
;
r
e
j
e
k
]
e
i
+
r
e
k
r
e
i
e
j
;
r
e
i
r
e
k
e
j
;
r
e
k
e
i
]
e
j
=
=
r
e
i
e
j
e
k
]
;
r
e
j
e
i
e
k
]
;
r
e
k
e
j
e
i
] = 0
:
K 5" " , &' 8 ..
3). 3 � 00 8
B &7
B(u + vu + v) = B(uu) + B(uv)+ B(vu) + B(vv)
&, ' '# # &
B(ww) = 0
"
w. / H 0-
5 ' & " " &
Z
h
R(e
i
e
j
)
ZZ
i
= 0. 2 ' (8,9), ' #, '
hr
i
r
j
ZZ
i
=
hr
j
r
i
ZZ
i
:
35
%# 870 & & '0, #
,
@
2
@x
i
@x
j
h
ZZ
i
=
r
i
(
hr
j
ZZ
i
+
h
Z
r
j
Z
i
) = 2
r
i
hr
j
ZZ
i
= 2
hr
i
r
j
ZZ
i
+2
hr
j
Z
r
i
Z
i
@
2
@x
j
@x
i
h
ZZ
i
= 2
hr
j
r
i
ZZ
i
+ 2
hr
i
Z
r
j
Z
i
:
/' &" H &## '#
" &, &' H. = &'# -
., &H:
0 =
h
R(e
i
e
j
)
e
k
e
l
i
+
h
R(e
i
e
j
)
e
l
e
k
i
=
g
rs
(
R(e
i
e
j
)
e
k
)
r
(
e
l
)
s
+
g
rs
(
R(e
i
e
j
)
e
l
)
r
(
e
k
)
s
=
=
g
rs
R
rmij
(
e
k
)
m
sl
+
g
rs
R
rmij
(
e
l
)
m
sk
=
g
rl
R
rkij
+
g
rk
R
rlij
=
g
lr
R
rkij
+
g
kr
R
rlij
=
R
lkij
+
R
klij
:
4). 3 # # 0. J 5 &
. "# ' '
i, H. &, .
'
i, # 7' &. _, &
" H "
i, . 0 | q, k l, ' 5
. ? ., & ". / H.,
7# '. ', & '-
, . ., &, & .0 H
R
iqkl
|
R
lkqi
.
;
;
;
;
;
;
B
B
B
B
B
B
B
B
B
B
B
e
e
e
e
e
e
e
e
@
@
@
@
@
@
@
L
L
L
L
L
L
L
L
L
L
i
k
q
l
R
lkqi
R
ilqk
R
iklq
R
iqkl
R
qlki
R
kqli
2 &, . H. 0 '0 ", ,
. &. 3 "
i 5
T. % 5, &, "
q:
R
iqkl
+
R
kqli
+
R
qlki
=
;
R
qikl
;
R
qkli
;
R
qlik
= 0
36
&# & T. -&# . .. "0
i
q ' . k l:
0 = (
R
iqkl
+
R
iklq
+
R
ilqk
) + (
R
iqkl
+
R
kqli
+
R
qlki
)
;
;
(
R
kqli
+
R
iklq
+
R
lkqi
)
;
(
R
ilqk
+
R
lkqi
+
R
qlki
) = 2
R
iqkl
;
2
R
lkqi
:
2
3 7 5" &"8 # .
9.10.
2
R
jl
=
R
ijil
<
0 0 . 2 & &
<''
R = g
li
R
il
%
.
9.11.
3#, ' <'' '.
9.12.
%
%
'!
R
iqkl
=
g
ir
R
rqkl
= 12
@
2
g
il
@x
q
@x
k
+ @
2
g
qk
@x
i
@x
l
;
@
2
g
ik
@x
q
@x
l
;
@
2
g
ql
@x
i
@x
k
!
+
g
mp
(;
mqk
;
p
il
;
;
mql
;
p
ik
)
:
.
,' & 8.
q l ' S
iql
&,
& (
x
1
:::x
n
) ;
iql
. / 50
g
ir
R
rqkl
=
g
ir
"
@;
rql
@x
k
;
@;
rqk
@x
l
+ ;
p
ql
;
rpk
;
;
p
qk
;
rpl
#
=
=
g
ir
2
Alt
(
kl)
"
@;
rql
@x
k
+ ;
p
ql
;
rpk
#
= 2
Alt
(
kl)
2
6
4
g
ir
r
k
S
rql
+ (
r
k
g
ir
)
|
{z
}
0
S
rql
3
7
5
=
= 2
Alt
(
kl)
h
r
k
(
g
ir
S
rql
)
i
:
%#
g
ir
1
2 g
rs
@g
sq
@x
l
+ @g
sl
@x
q
;
@g
ql
@x
s
!
= 12
@g
iq
@x
l
+ @g
il
@x
q
;
@g
ql
@x
i
!
& 8.
q l & g
ir
S
rql
| & (0,1),
g
ir
R
rqkl
=
Alt
(
kl)
"
@
@x
k
@g
iq
@x
l
+ @g
il
@x
q
;
@g
ql
@x
i
!
;
@g
mq
@x
l
+ @g
ml
@x
q
;
@g
ql
@x
m
!
;
mik
#
=
=
Alt
(
kl)
"
@
2
g
iq
@x
k
@x
l
+ @
2
g
il
@x
k
@x
q
;
@
2
g
ql
@x
k
@x
i
!
;
2
g
mr
;
rlq
;
mik
#
=
= 12
@
2
g
iq
@x
k
@x
l
+ @
2
g
il
@x
k
@x
q
;
@
2
g
ql
@x
k
@x
i
!
;
1
2
@
2
g
iq
@x
l
@x
k
+ @
2
g
ik
@x
l
@x
q
;
@
2
g
qk
@x
l
@x
i
!
;
;
g
mr
;
rlq
;
mik
+
g
mr
;
rkq
;
mil
' 0 # & ' ' .
2
37
/
9.13.
B%
#.
%
-
!,
#
%
%%
%-
!
!
(*
)
%
%%
-
%!
%
(%
844%
%).
9.14.
= " " ?
9.15.
7
!
&
M
%
!-
:
R = 2K
.
.
%# & &'', '#,
' 0 '
P
2
M " "8
x
3
=
f(x
1
x
2
) . .,
x
3
(
P) = 0, # &# T
P
M =
Ox
1
x
2
,
~r
1
= (1
0 @f
@x
1
)
~r
2
= (0
1 @f
@x
2
)
g
11
= 1 +
@f
@x
1
!
2
g
22
= 1 +
@f
@x
2
!
2
g
12
=
g
21
= @f
@x
1
@f
@x
2
| & 0 '
P. C #0 & &-
', ' '
P &
@f
@x
1
=
@f
@x
2
= 0. 1', &#
@
@x
k
@f
@x
i
@f
@x
j
!
= @
2
f
@x
k
@x
i
@f
@x
j
+ @f
@x
i
@
2
f
@x
k
@x
j
= 0
'
P
@
@x
k
(
g
ij
)
j
P
= 0. %5 ;
ijk
(
P) = 0. % 8 9.12 (
) & ( &H
@f
@x
i
=
f
i
)
R
12
12
= 12
@
2
g
12
@x
1
@x
2
+ @
2
g
21
@x
1
@x
2
;
@
2
g
11
@x
2
@x
2
;
@
2
g
22
@x
1
@x
1
!
=
= 12
f
2(
f
1
f
2
)
12
;
((
f
2
)
2
)
11
;
((
f
1
)
2
)
22
g
= (
f
11
f
2
+
f
1
f
12
)
2
;
(
f
2
f
21
)
1
;
(
f
1
f
12
)
2
=
=
f
112
f
2
+
f
11
f
22
+
f
12
f
12
+
f
1
f
122
;
f
12
f
12
;
f
2
f
112
;
f
12
f
12
;
f
1
f
122
=
=
f
11
f
22
;
f
12
f
12
=
f
11
f
12
f
12
f
22
=
K
&# 5887 0 '0 8
b
ij
(
P) =
h
~r
ij
~n
i
=
h
(0
0f
ij
)
(001))
i
=
f
ij
7 &0 | ', ' & ". &
& 7 0 8. 1, '
R
12
12
=
K
&7#0 , | & , &
| . 3,
R = g
kl
R
kl
=
g
kl
R
ikil
=
g
kl
g
ir
R
rkil
:
38
<
R
ijkl
:
R
12
12
=
;
R
21
12
=
;
R
12
21
=
R
21
21
R
11
ij
=
R
22
ij
=
R
km11
=
R
km22
= 0
:
%5
R = g
22
g
11
R
12
12
+
g
12
g
12
R
21
12
+
g
21
g
21
R
12
21
+
g
11
g
22
R
21
21
=
=
R
12
12
(
g
22
g
11
;
g
12
g
12
;
g
21
g
21
+
g
11
g
22
) = 2
R
12
12
det
k
g
ij
k
= 2 R
12
12
det
k
g
ij
k
:
? . / H0 &7#0
g
ij
(
P) =
ij
R(P) = 2
K(P).
2
/
9.16.
9
%
4
&-
,
%!%,
&.
#
9.17.
(
x
1
:::x
n
)
|
!
P
2
M
,
!
(
M
r
)
|
#
,
#%
,
x
i
(
P) = 0
8
i
.
2
T
P
M
|
%
,
"
=
"
(
ij)
|
%-
-
6
?
0
"
"
6
-
x
j
x
i
39
!
lim
"
!
0
k"
;
k
"
2
=
R
klij
l
:
.
/&H & # 0 0
s
0
s:
0 = d
k
ds + ;
klm
l
dx
m
ds
d
k
=
;
;
klm
l
dx
m
'# " &
k
(
s)
k
(
s
0
)
;
;
klm
(
s
0
)
l
(
s
0
)B
x
m
;
klm
(
s)
;
klm
(
s
0
) + @;
klm
@x
r
(
s
0
)B
x
r
:
- ,
d
k
"
;
;
klm
(
s
0
) + @;
klm
@x
r
(
s
0
)B
x
r
!
l
(
s
0
)
;
;
lpr
(
s
0
)
p
(
s
0
)B
x
r
#
dx
m
"
;
klm
(
s
0
)
l
(
s
0
) +
;
@;
klm
@x
r
(
s
0
)
l
(
s
0
) + ;
klm
(
s
0
);
lpr
(
s
0
)
p
(
s
0
)
!
B
x
r
#
dx
m
:
%0 , ' & &
P, ',
' & " #, ' 0 ( &
. ) <:
k"
;
k
"
;
@;
kpm
@x
r
+ ;
klm
;
lpr
#
l
I
B
x
r
@x
m
@u
1
du
1
+ @x
m
@u
2
du
2
!
=
& 8 _
=
"
;
@;
kpm
@x
r
+ ;
klm
;
lpr
#
l
Z
Z
2
@
@u
1
B
x
r
@x
m
@u
2
!
;
@
@u
2
B
x
r
@x
m
@u
1
!
!
du
1
du
2
=
=
"
;
@;
kpm
@x
r
+ ;
klm
;
lpr
#
l
Z
Z
2
@x
r
@u
1
@x
m
@u
2
;
@x
m
@u
1
@x
r
@u
2
!
du
1
du
2
=
=
"
;
@;
kpm
@x
r
+ ;
klm
;
lpr
#
l
"
2
(
rm
) =
"
2
R
klij
l
:
2
M& &.
9.18.
3
f
0
f
1
:
M
!
N "" " M
"
N
%!
,
"
F " M
0
1] N, '
F(P0) = f
0
(
P)
F(P1) = f
1
(
P)
8
P
2
M:
? & . & "& . &0,
&# " { . = &
, '#, ' &#
ab], (a
;
"b + "),
' (
a
;
"b + ")
0
1] ". :', & 5
#, '
F(0t) = f
0
(0) =
f
1
(1)
F(1t) = f
0
(1) =
f
1
(1)
8
t
2
0
1]:
40
9.19.
%' 5 . ?
+ # ", &' & (&-
0)
&. 0
f
0
f
1
&#" &"'"
&
M & N.
9.20.
%, ' &0 "& . ". -
0 . " "&#.
9.21.
%
!
%
!,
!
%-
%%%
!
!
(%,
'
,
%
-
!
&!
).
.
+ # & & " -
& . , , ' "
"- &-
0 , &' & 0, ' < .
,, &#
0
1
: (
;
"1+")
!
M | "& ,
0
(0) =
1
(0) =
P
0
,
0
(1) =
1
(1) =
P
1
, "&
G : (
;
"1 + ")
0
1]
!
M 5
&
t (' s & (
;
"1+"), t { 01]). ,
&
t
(
s) | # # G(st) & 8 t ( ',
0
(
s)
1
(
s) | #
0
1
), &
s
(
t) | # #
G(st) & 8 s. , " v
2
T
P
0
M
&
v
s
(
t), " v
s
(
t) | # & v #
t
(
s) = G(st) & 8-
t ' & s. (1, ' & & &
' ", # "# 0.) ,,
&
v
s
(
t) & # G(st) & 8 s.
30#,
r
t
(
s)
r
s
(
t)
v
is
(
t)
;
r
s
(
t)
r
t
(
s)
v
is
(
t)
;
r
t
(
s)
s
(
t)]
v
is
(
t) = R
ijkl
v
js
(
t)
kt
(
s)
ls
(
t):
% &
v
s
(
t) " . /
<, & '#. -# " ,
, &"
G(ts) = (x
1
(
ts):::x
n
(
ts)),
t
(
s)
s
(
t)]
k
=
t
(
s)
j
@
s
(
t)
k
@x
j
;
s
(
t)
j
@
t
(
s)
k
@x
j
=
= @x
j
@s
@
@x
j
@x
k
@t
!
;
@x
j
@t
@
@x
j
@x
k
@s
!
= @
2
x
k
@s@t
;
@
2
x
k
@t@s = 0:
C, &
r
s
(
t)
v
s
(
t) & # 0
t
(
s) & &
0 &
s = 0 ( v
0
(
t)
v). 2#,
r
s
(
t)
v
s
(
t) = 0 & s,
', &
s = 1.
- , &#
G(1t)
P
1
,
1
(
t)
0
0 =
r
1
(
t)
v
i
1
(
t) = ddtv
i
1
(
t) + ;
imk
m
1
(
t)v
k
1
(
t) = ddtv
i
1
(
t)
. .
v
1
t.
2
41
10.
,%%
&
#%-
%
&.
%
< &# ' #
r
"
M
(&, # 0 ) H 887#-
8
! " k, . . ' & & (0k). %-
. 8 '# ' `
k
(
M). -" &
:
!44*%
!
d! 8 ! & 8
d! :=
(
k + 1)!
k! Alt
r
!
.
(
d!)
i
1
:::i
k
+1
=
1
k!
X
2
S
k
+1
(
;
1)
r
(j
k
+1
)
!
(j
1
)
:::(j
k
)
:
"
, ' .
(
;
1)
=
sgn
1
:::kk + 1
(k + 1)(1):::(k)
!
. .
= (
;
1)
k
. : &,
d! | H 8 " k + 1.
#
10.1.
9!
d!
#
.
=,
(
d!)
i
1
:::i
k
+1
=
k+1
X
s=1
(
;
1)
s+1
@!
j
1
:::j
s
;1
j
s
+1
:::j
k
@x
j
s
:
.
% & 0 &0
(
d!)
i
1
:::i
k
+1
=
= 1k!
X
2
S
k
+1
(
;
1)
"
@!
(j
1
)
:::(j
k
)
@x
(j
k
+1
)
;
k
X
r=1
!
(j
1
)
:::(j
r
;1
)
(j
r
+1
)
:::(j
k
)
;
(j
r
)
(j
k
+1
)
#
=
= 1k!
X
2
S
k
+1
(
;
1)
@!
(j
1
)
:::(j
k
)
@x
(j
k
+1
)
;
;
1
k!
X
2
S
k
+1
k
X
r=1
h
;
(j
r
)
(j
k
+1
)
;
;
(j
k
+1
)
(j
r
)
i
!
(j
1
)
:::(j
r
;1
)
(j
r
+1
)
:::(j
k
)
=
( ' )
= 1k!
X
2
S
k
+1
(
;
1)
@!
(j
1
)
:::(j
k
)
@x
(j
k
+1
)
=
= 1k!
k+1
X
s=1
X
2
S
k
sgn
1
:::k + 1
s(1):::(s
;
1)
(s + 1)(k + 1)
!
@!
(j
1
)
:::(j
s
;1
)
(j
s
+1
)
:::(j
k
+1
)
@x
j
s
=
42
= 1k!
k+1
X
s=1
X
2
S
k
(
;
1)
s
;
1
(
;
1)
@!
(j
1
)
:::(j
s
;1
)
(j
s
+1
)
:::(j
k
+1
)
@x
j
s
=
( '
!)
= 1k!
k+1
X
s=1
X
2
S
k
(
;
1)
s
;
1
(
;
1)
(
;
1)
@!
j
1
:::j
s
;1
j
s
+1
:::j
k
+1
@x
j
s
=
= 1k!
k!
k+1
X
s=1
(
;
1)
s+1
@!
j
1
:::j
s
;1
j
s
+1
:::j
k
+1
@x
j
s
:
2
10.2.
_ 887#0 8 . &-
'# \& 887". C, ,
' '0 887 87 & H, , # "
'# '
df, &# &7 (5 1-8, "
()'),
! =
X
i
1
<:::<i
k
!
i
1
:::i
k
dx
i
1
^
:::
^
dx
i
k
&
d! =
X
i
1
<:::<i
k
d(!
i
1
:::i
k
)
^
dx
i
1
^
:::
^
dx
i
k
=
X
i
1
<:::<i
k
X
i
0
@(!
i
1
:::i
k
)
@x
i
0
dx
i
0
^
dx
i
1
^
:::
^
dx
i
k
:
-" 5 & & H.
10.3.
%#.
10.4.
!
(1)
!
(2)
|
!44*%
4
p
q
-
.
!
d(!
(1)
^
!
(2)
) =
d!
(1)
^
!
(2)
+ (
;
1)
p
!
(1)
^
d!
(2)
:
.
3' &# 0 8 (
0 &" )
!
(1)
=
f dx
i
1
^
:::
^
dx
i
p
!
(2)
=
g dx
j
1
^
:::
^
dx
j
q
:
-" & & '
d(!
(1)
^
!
(2)
) =
d(fg dx
i
1
^
:::
^
dx
i
p
^
dx
j
1
^
:::
^
dx
j
q
) =
= @f
@x
k
g dx
k
^
dx
i
1
^
:::
^
dx
i
p
^
dx
j
1
^
:::
^
dx
j
q
+
f @g
@x
k
dx
k
^
dx
i
1
^
:::
^
dx
i
p
^
dx
j
1
^
:::
^
dx
j
q
=
=
@f
@x
k
dx
k
^
dx
i
1
^
:::
^
dx
i
p
!
^
g dx
j
1
^
:::
^
dx
j
q
+
+(
;
1)
p
f dx
i
1
^
:::
^
dx
i
p
^
@g
@x
k
dx
k
^
dx
j
1
^
:::
^
dx
j
q
!
=
=
d!
(1)
^
!
(2)
+ (
;
1)
p
!
(1)
^
d!
(2)
:
2
43
10.5.
%
%#
4
!
d(d!) = 0
.
.
2 ' &# 8
! = f dx
i
1
^
:::
^
dx
i
p
. K ",
!
(1)
!
(2)
, .
H" &. 30#,
dd(!
(1)
^
!
(2)
) =
d(d!
(1)
^
!
(2)
+ (
;
1)
p
!
(1)
^
d!
(2)
) =
=
dd!
(1)
^
!
(2)
+ (
;
1)
p+1
d!
(1)
^
d!
(2)
+ (
;
1)
p
d!
(1)
^
d!
(2)
+ (
;
1)
p+p
!
(1)
^
dd!
(2)
= 0
:
- , # &#
f dx
i
. C
d(df) = d( @f
@x
k
dx
k
) = @
2
f
@x
i
@x
k
dx
i
^
dx
k
=
X
i<k
@
2
f
@x
i
@x
k
;
@
2
f
@x
k
@x
i
!
dx
i
^
dx
k
= 0
:
=
dx
i
, & &
f = x
i
:
dd(dx
i
) =
d(ddx
i
) =
d(0) = 0:
2
10.6.
/H 887# 8
,
d! = 0, . . !
2
Ker
d,
,
! = d!
1
0 8
!
1
, . .
!
2
Im
d.
% &0 (', 0)
d 0
Im
d
Ker
d. - , " k & 8& k-
. . 8 &
k- ' 8. ? 0 &
H
k
(
M)
k
-&
%
!
"
M.
% " 00 8 &# -
0 887#0 8.
10.7.
%#
f : M
!
N | " ". "-
0,
!
2
`
k
(
N) | 887# 8.
)#
#
f
! 50
8 &0 . &0
M:
f
!(~v
1
:::~v
k
) :=
!(d
P
f(~v
1
)
:::d
P
f(~v
k
))
~v
i
2
T
P
M:
10.8.
%#, ' &' 887# 8.
#
10.9.
(
x
1
:::x
m
)
|
%%
!
P
2
M
,
(
y
1
:::y
n
)
|
f(P)
2
N
,
%%
f : M
!
N
!
4*
y
1
(
x
1
:::x
m
)
:::y
n
(
x
1
:::x
m
)
4
!
|
! =
X
i
1
<:::<i
k
!
i
1
:::i
k
(
y
1
:::y
n
)
dy
i
1
^
:::
^
dy
i
k
:
!
#
#
%%
!%
4%
f
(
!) =
X
i
1
<:::<i
k
!
i
1
:::i
k
(
y
1
(
x
1
:::x
m
)
:::y
n
(
x
1
:::x
m
))
df
i
1
(
x
1
:::x
m
)
^
:::
^
df
i
k
(
x
1
:::x
m
)
:
(10)
44
.
f
(
!)(~v
1
:::~v
k
) =
!(d
P
f(~v
1
)
:::d
P
f(~v
k
)) =
!(d
P
f(~v
1
)
:::d
P
f(~v
k
)) =
=
0
@
X
i
1
<:::<i
k
!
i
1
:::i
k
(
y
1
:::y
n
)
dy
i
1
^
:::
^
dy
i
k
1
A
(
d
P
f(~v
1
)
:::d
P
f(~v
k
)) =
=
X
i
1
<:::<i
k
!
i
1
:::i
k
(
y
1
:::y
n
)
Alt
i
1
:::i
k
]
n
dy
i
1
(
d
P
f(~v
1
))
:::dy
i
k
(
d
P
f(~v
k
))
o
=
=
X
i
1
<:::<i
k
!
i
1
:::i
k
(
y
1
:::y
n
)
Alt
i
1
:::i
k
]
(
@f
i
1
@x
j
1
(
~v
1
)
j
1
::: @f
i
k
@x
j
k
(
~v
1
)
j
k
)
=
=
X
i
1
<:::<i
k
!
i
1
:::i
k
(
y
1
:::y
n
)
Alt
i
1
:::i
k
]
n
df
i
1
(
~v
1
)
:::df
i
k
(
~v
1
)
o
=
=
0
@
X
i
1
<:::<i
k
!
i
1
:::i
k
(
y
1
:::y
n
)
df
i
1
^
:::
^
df
i
k
1
A
(
~v
1
:::~v
k
)
:
2
10.10.
%# " "
M,
dim
M = n, 8 ! #0 & (. . deg ! = n) &-
0 (
U'
) (
x
1
:::x
n
). 1# ,
" &, & 0
'
&
-
012'
.
,&
%
! & U 80
Z
U
! :=
Z
'
(
U)
R
n
!
12
:::n
dx
1
:::dx
n
:
(11)
#
10.11.
=%
!%
,
.
.
(11)
#
%%&
!
!%&
U
.
.
%# (
U'
) | "
U #
(
x
1
:::x
n
). -" & & " 6.31
� .
Z
'
(
U)
R
n
!
12
:::n
dx
1
:::dx
n
=
Z
'
(
U)
R
n
!
12
:::n
det
@x
i
@x
j
dx
1
:::dx
n
=
=
Z
'
(
U)
R
n
!
12
:::n
det
@x
i
@x
j
dx
1
:::dx
n
=
Z
'
(
U)
R
n
!
12
:::n
dx
1
:::dx
n
:
2
10.12.
%#
M | " ",
dim
M = n, 8 ! #0 & (. . deg! = n) & -
. 3 # '"
f
(
U
'
)
g
&'"
7
&
%
Z
M
! = I(M!
f
(
U
'
)
g
) :=
X
Z
U
!:
45
#
10.13.
=%
!%
,
.
.
#
f
(
U
'
)
g.
.
+ # . , # . 9,
7 & 87. 3 " . "
. - , #
I(M!
f
(
U
'
)
g
) =
I(M!
f
(
U
'
0
0
)
g
)
:
M# (" "") , . .
'
,
&0 . C, # #, '
I(M!
f
(
U
'
)
g
) =
I(M!
f
(
U
'
0
)
g
)
:
%
:=
;
0
,
= 1:::N, '
k
X
=1
= 0
k = N:
(12)
-" # & 8
k
X
=1
Z
U
!
k = N
(13)
&# 70 &
k. -. . &&, ' k =
1
:::N
;
1 &#.
: 0
!
R
+
supp
U
8 (12) '
(13) (
k = 1 5 #). %# " 87 : M
!
0
1]
1 supp
N
U
N
supp
U
N
. - 87 #
&"'" &
M. - ,
N
N
N
=
;
N
;
1
X
=1
=
;
N
;
1
X
=1
supp(
)
(
U
N
\
U
)
:
%5
N
X
=1
Z
U
! =
Z
U
N
N
! +
N
;
1
X
=1
Z
U
! =
;
N
;
1
X
=1
Z
U
! +
N
;
1
X
=1
Z
U
! =
=
N
;
1
X
=1
Z
U
(
;
)
!:
(14)
%#
N
;
1
X
=1
(
;
) =
N
;
1
X
=1
;
N
;
1
X
=1
=
N
;
1
X
=1
+
N
=
N
;
1
X
=1
+
N
=
N
X
=1
= 0
&# (14) && 7.
2
,'
46
!
3
10.14.
=%
%
%
#'
!
R
`
ncomp
(
MOr)
!
R
:
10.15.
-&# &#
#$
#
' " 8 9.
10.16.
%#, ' & 7 " .
10.17.
%#, ', & . . "'.
, '# " 8 : # -
" , 0 . 0 , &"#
"' 8 #. ., # #.
10.18.
(, 8 2).
%!
#
M
@M
,
dim
M = n
,
:
!44*%
4
!
%
M
,
deg
! = n
;
1
.
=
%!.
#.
4%
-
(
;
1)
n
Z
M
d! =
Z
@M
!
=
Z
@M
'
!
(15)
!
' : @M
!
M
|
%'
.
.
/ 0 . '0 8 (15) &
!, '
&# 8
! 0 (&# ! =
P
!, "
f
g
| 7, &' # ' )
0
! = f(x
1
:::x
n
)
dx
1
^
:::
^
dx
k
;
1
^
dx
k+1
^
:::
^
dx
n
d! = (
;
1)
k
;
1
@f
@x
k
dx
1
^
:::
^
dx
n
"
f :
R
n
+
!
R
| " 87 & . M&, '
x
n
0
@M . x
n
= 0. 2, '
'0
k
n
;
1. N#
' : @M
!
M
'(x
1
:::x
n
;
1
) = (
x
1
:::x
n
;
1
0)
d'
n
= 0, '
'
! = 0 (. (10)). 3 0 ' (15)
Z
R
n
+
d! =
Z
R
n
+
(
;
1)
k
;
1
@f
@x
k
dx
1
:::dx
n
=
= (
;
1)
k
;
1
Z
R
n
;1
+
8
<
:
+
1
Z
;1
@f
@x
k
dx
k
9
=
dx
1
:::dx
k
;
1
dx
k+1
dx
n
=
= (
;
1)
k
;
1
Z
R
n
;1
+
n
f(x
1
:::x
k
;
1
+
1
x
k+1
:::x
n
)
;
;
f(x
1
:::x
k
;
1
;1
x
k+1
:::x
n
)
o
dx
1
:::dx
k
;
1
dx
k+1
dx
n
=
47
= (
;
1)
k
;
1
Z
R
n
;1
+
n
0
;
0
o
dx
1
:::dx
k
;
1
dx
k+1
dx
n
= 0
(# &. & ).
< &# '0
k = n. -&#
Z
R
n
+
d! =
Z
R
n
+
(
;
1)
n
;
1
@f
@x
n
dx
1
:::dx
n
=
= (
;
1)
n
;
1
Z
R
n
;1
0
8
<
:
+
1
Z
0
@f
@x
n
dx
n
9
=
dx
1
:::dx
n
;
1
=
= (
;
1)
n
;
1
Z
R
n
;1
0
n
f(x
1
:::x
n
;
1
+
1
)
;
f(x
1
:::x
n
;
1
0)
o
dx
1
:::dx
n
;
1
=
= (
;
1)
n
Z
R
n
;1
0
f(x
1
:::x
n
;
1
0)dx
1
:::dx
n
;
1
=
Z
R
n
;1
0
'
!
(# &. " & & -
).
2
10.19.
/ 0 8 2 8
1) _
2) 2
3) ,"" | _.
48