2000 04 08 prawdopodobie stwo i statystyka

background image

Egzamin dla Aktuariuszy z 8 kwietnia 2000 r.

Prawdopodobieństwo i Statystyka

Zadanie 1

(

)

49

,

0

)

\

P(

bo

49

,

0

)

(

7

,

0

)

(

.

=

+

=

=

C

B

A

A

C

B

A

P

A

P

I

Z tego:

21

,

0

5

,

0

6

,

0

7

,

0

)

(

)

(

)

(

21

,

0

)

(

=

=

=

C

P

B

P

A

P

C

B

A

P

TAK


II TAK bo:

0

)

(

0

)

(

0

)

(

0

)

(

=

=

=

=

C

P

A

P

C

B

A

P

B

P


III NIE bo:

=

=

=

=

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

B

P

A

P

C

P

A

P

B

A

P

C

A

P

C

B

A

P

B

A

C

A

P

=

)

(

)

(

)

(

2

C

P

B

P

A

P

nzl tylko gdy P(A)=1 lub 0


czyli odpowiedź (D) jest prawidłowa

Zadanie 2

Dla k=1 (c,b) (b,c) (b,b,c) (b,b,b,c) (b,b,b,b,c) (b,b,b,b,b,c)

Z tego:

1716

9

9

9

10

9

11

9

12

4

13

2

=





+





+





+





+





Dla k>1 kilka czarnych i biała

=

=

=









+





=

10

2

2

...

5

15

4

14

5

15

1716

k

k

ODP


Zadanie 3

(

)

(

)

M

t

M

Y

X

t

Y

P

X

M

t

M

Y

X

t

X

P

X

=

=

+

=

=

=

+

=

2

1

jednostajny na (0;M) bo

(

) (

)

M

e

µ

e

µ

e

µ

e

µ

LICZ

X

f

X

M

Y

X

f

M

Y

X

X

f

M

x

µ

x

M

µ

x

µ

x

M

µ

1

1

1

1

1

)

(

0

1

)

(

1

1

)

(

1

=

=

=

+

=

=

+

dla

(

)

=

=

=

=

+

t

M

t

M

t

M

t

X

M

t

X

P

M

Y

X

t

Y

X

P

M

t

2

1

1

)

,

(

1

)

,

min(

2

;

0

M

f

2

=

background image

=

=

=

=

=

2

0

2

2

0

2

24

6

4

4

2

M

M

M

M

M

M

M

t

M

t

ODP


Zadanie 4

( )

( ) (

)

=

1

0

10

10

t

p

f

p

t

P

t

t

P

(

)

(

)

(

)

10

10

1

0

10

10

1

0

11

11

1

)

(

10

)

(

10

10

p

p

p

p

p

f

p

t

P

p

f

p

t

P

t

p

f

=

=

=

=

=





=

=

1

0

1

0

12

10

12

11

12

11

11

p

p

p

ODP


Zadanie 5



=

µ

X

µ

L

i

exp

1

10

µ

x

µ

L

i

=

ln

10

ln

50

0

10

10

2

2

=

=

=

+

=

+

=

x

µ

µ

x

µ

µ

x

µ

µ

L

i

i

(

)

µ

i

e

Y

P

X

P

L

100

1

)

100

(

100

:

=

>

=

=





=

=

µ

X

µ

e

L

i

i

µ

9

1

9

100

1

exp

1

µ

X

µ

µ

L

i

i

=

=

9

1

1

ln

9

100

ln

...

555

,

55

9

10

50

9

ˆ

0

9

9

100

2

2

10

1

2

9

1

2

=

=

=

=

+

=

=

=

i

i

i

i

i

x

µ

µ

µ

µ

x

µ

x

µ

µ

µ


Zadanie 6

)

1

,

0

(

J

Y

i

{ } (

) { }

1

1

2

min

min

θ

Y

θ

θ

X

i

i

+

=

background image

{ } (

)

{ }

1

1

2

max

max

θ

Y

θ

θ

X

i

i

+

=

Z tego:

{ }

{ }

(

)

{ }

{ }

(

)

i

i

i

i

Y

Y

corr

X

X

corr

max

,

min

max

,

min

=

n

t

t

P

t

P

)

1

(

1

)

(min

1

)

(min

=

=

1

min

)

1

(

=

n

t

n

f

n

t

t

P

=

)

(max

1

max

=

n

nt

f

y

x

dla

)!

2

(

)

(

!

max

,

min

2

<

=





n

x

y

n

f

n

y

x

+

=

+

=

+

=

=

=

=

=

+

1

0

1

0

1

0

1

1

1

1

1

1

1

1

)

1

(

1

)

1

(

min

n

n

n

n

nu

u

nu

u

u

t

t

tn

E

n

n

n

n

+

=

+

=

=

+

1

0

1

0

1

1

1

1

max

n

n

n

nt

tnt

E

n

n

∫ ∫

∫ ∫

=

+

=

=

=

=

1

0

1

1

0

1

0

2

2

)

1

(

)

(

)

)(

1

(

max)

(min

x

x

n

n

dtdx

t

n

n

x

t

x

t

x

y

dydx

x

y

n

xyn

E

=

=

=

+

=

+

=

1

0

1

0

1

1

0

1

1

1

)

1

(

)

1

(

)

1

(

1

)

1

(

t

x

n

x

x

n

x

n

xn

n

xt

n

t

n

xn

n

n

x

n

n

=

+

+

+

+

+

+

=

+

=

+

+

+

+

1

0

2

1

2

1

1

)

1

)(

2

(

)

1

)(

1

(

2

)

1

(

)

2

(

)

1

(

)

1

(

1

)

1

(

)

1

(

)

1

(

n

n

t

n

n

t

n

n

t

n

n

t

n

n

t

n

n

n

t

t

n

t

n

n

t

n

n

n

n

n

n

n

=

+

+

+

+

+

+

=

+

+

+

+

+

+

=

2

1

2

1

2

1

1

1

)

1

)(

2

(

1

)

1

)(

1

(

2

)

1

(

1

)

2

(

1

)

1

(

1

)

1

(

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

2

1

2

1

1

1

1

+

=

+

+

+

+

+

=

n

n

n

n

n

n

(

)

=

+

+

+

=

+

+

+

=

+

=

=

=

=

+

+

1

0

1

0

1

0

2

1

1

2

1

2

2

2

1

2

1

2

1

2

2

1

1

)

1

(

min

n

n

n

n

n

u

n

n

nu

u

nu

u

u

u

t

t

n

t

E

n

n

n

n

n

)

2

)(

1

(

2

)

2

)(

1

(

4

2

2

3

2

2

2

+

+

=

+

+

+

+

+

+

=

n

n

n

n

n

n

n

n

n

n

+

=

+

=

=

+

1

0

1

0

2

1

2

2

2

2

max

n

n

n

nt

nt

t

E

n

n

)

2

(

)

1

(

)

2

(

)

1

(

2

2

2

)

1

(

1

)

2

)(

1

(

2

min

var

2

2

2

+

+

=

+

+

+

=

+

+

+

=

n

n

n

n

n

n

n

n

n

n

)

2

(

)

1

(

)

2

(

)

1

(

2

2

)

2

(

)

1

(

)

2

(

)

1

(

)

1

(

2

max

var

2

2

2

3

2

3

2

2

2

2

2

+

+

=

+

+

+

+

=

+

+

+

+

=

+

+

=

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

corr

1

)

2

(

)

1

(

)

2

(

)

1

(

2

1

2

)

2

(

)

1

(

)

1

(

2

1

2

2

2

2

2

2

=

+

+

+

+

+

+

=

+

+

+

+

=

background image

Zadanie 7

Dla pierwszej grupy:

(

)

(

)

(

)

x

i

x

x

i

q

Z

P

q

q

Z

P

3

1

3

2

0

q

3

1

3

1

3

1

1

3

2

1

x

=

=

+

=

+

=

=


dla II grupy:

(

)

(

)

x

i

x

i

q

Z

P

q

Z

P

3

1

3

1

0

3

1

3

2

1

+

=

=

=

=

1

n

- ilość 1 dla I grupy =

1

100

Z

2

n

- ilość 1 dla II grupy =

2

100

Z

2

2

1

1

100

100

3

1

3

1

3

1

3

2

3

1

3

2

3

1

3

1

n

x

n

x

n

x

n

x

q

q

q

q

L

+

+

=

(

)

(

)

+

+

+

+

+

=

x

x

x

x

q

Z

q

Z

q

Z

q

Z

L

3

1

3

1

ln

1

100

3

1

3

2

ln

100

3

1

3

2

ln

1

100

3

1

3

1

ln

100

ln

2

2

1

1

(

)

(

)









+

=

+

+

+

=

x

x

x

x

x

x

x

q

q

q

Z

q

Z

q

Z

q

Z

q

3

1

3

2

3

1

3

1

3

0

3

1

3

1

3

1

1

100

3

1

3

1

3

2

100

3

1

3

1

3

2

1

100

3

1

3

1

3

1

100

2

2

1

1

(

)

(

)

0

3

1

3

1

100

100

100

3

1

3

2

100

100

100

2

1

2

1

=

+

+

+

x

x

q

Z

Z

q

Z

Z

(

) (

) (

)

2

1

2

1

2

1

1

2

100

100

100

3

2

100

100

100

3

1

100

100

100

100

100

100

3

1

Z

Z

Z

Z

Z

Z

Z

Z

q

x

+

+

=

+

3

100

100

100

3

200

2

1

+

=

Z

Z

q

x

+

=

2

3

;

2

3

;

2

1

2

3

2

3

2

1

2

1

Z

Z

q

x


Zadanie 8





2

2

2

1

2

1

2

;

;

n

σ

µ

N

X

n

σ

µ

N

X

+

=

+

+

+

=

=

2

2

2

2

2

~

var

~

2

1

2

2

2

2

2

1

2

2

1

2

2

2

1

2

1

n

n

σ

n

σ

n

n

n

n

σ

n

n

n

X

µ

X

E

+

2

;

~

2

1

2

n

n

σ

µ

N

X

background image

(

)

(

)





+

+

+

=



+

=

=

=

=

=

=

1

1

2

2

1

2

1

1

1

1

2

2

,

2

2

,

2

2

1

,

1

2

,

1

1

1

2

,

2

2

,

1

~

~

2

5

,

0

~

~

2

~

2

1

~

n

i

n

i

n

i

n

i

i

i

i

i

n

i

n

i

i

i

X

n

X

X

X

X

n

X

X

X

E

X

X

X

X

E

(

)

=

=

=

+

=

=



+

+

+

=

1

1

2

1

2

2

1

2

,

1

1

1

2

2

2

2

2

,

2

2

1

1

1

2

,

1

~

5

,

0

~

5

,

0

~

~

2

n

i

i

n

i

n

i

i

i

µ

σ

n

X

E

X

n

X

n

X

X

X

n

X

n

X

X

E

( )

( )

(

)

1

2

2

1

2

2

1

2

1

1

1

2

1

2

2

1

1

1

2

2

2

2

2

~

X

X

E

n

n

n

X

E

n

n

n

X

n

n

X

n

X

n

E

X

X

E

+

+

+

=

+

+

=

(

)

2

1

2

2

2

1

2

1

2

1

2

1

1

µ

n

σ

µ

n

σ

n

n

X

E

+

=

+

=

(

)

2

1

2

1

2

µ

X

E

X

E

X

X

E

=

=

2

2

1

2

2

2

~

µ

n

n

σ

X

E

+

+

=

(

)

=

+

=

2

1

2

2

2

2

,

2

2

n

i

i

µ

σ

n

X

E

( )



+

+

+

+

=

+

+

=

2

2

2

2

1

2

2

2

1

1

2

2

1

2

2

1

1

2

2

2

2

2

2

2

~

µ

n

σ

n

n

n

µ

n

n

n

X

n

n

X

n

X

n

E

X

X

E

(

)

+

+

+

+

+

+



+

+

+

=

2

2

1

2

1

2

2

1

2

2

1

2

2

1

1

1

2

2

1

2

2

2

2

2

2

µ

n

n

σ

n

µ

n

n

n

µ

n

σ

n

n

n

n

µ

σ

n

c

S

E

(

)

=

+

+

+



+

+

+

+

+

+

2

2

1

2

2

2

2

2

2

1

2

2

2

1

1

2

2

2

2

2

5

,

0

2

2

2

2

2

5

,

0

µ

n

n

σ

n

µ

n

σ

n

n

n

µ

n

n

n

n

µ

σ

n

+

+

+

+

+

+

+

+

=

2

2

2

2

2

2

2

1

2

2

1

2

2

2

1

1

2

1

1

1

2

n

n

n

n

n

n

n

n

n

n

n

n

n

n

σ

+

+

+

+

+

+

+

+

2

2

1

2

2

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1

2

5

,

0

2

2

2

5

,

0

2

2

2

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

µ

przy

0

2

2

4

2

4

2

2

2

2

:

2

1

2

1

2

2

2

2

2

1

2

2

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

=

+

+

+

+

+

+

+

+

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

µ

background image

1

1

2

2

1

2

2

2

1

2

1

2

1

2

1

2

1

2

1

2

2

2

1

1

1

+

=

+

+

+

=

+

+

+

=

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

c


Zadanie 9

+

=

+

=

>

k

f

k

x

k

X

P

1

1

)

1

(

1

)

(

2

0

α

c

f

f

P

f

=





>

0

1

0

(

)

(

)

)

1

(

)

1

(

2

2

1

2

1

1

0

α

c

x

f

P

α

c

x

f

P

f

f

=

+

=

>

+

równość dla każdego k

)

(

)

(

2

0

1

k

X

P

k

X

P

f

f

>

=

>

2

1

1

)

(

1

k

k

X

P

f

+

=

>

2

)

1

(

1

1

)

(

1

k

k

X

P

f

+

=

3

)

1

(

2

1

x

f

f

+

=

jak skonstruujemy test najmocniejszy np. dla

{

}

<

=

=

1

1

X

K

α

błąd?

Ale chyba jest błąd bo twierdzenie: że dla najmocniejszego testu

α

β

>

chyba że

1

0

P

P

=

1

2

>

>

α

α

α

niemożliwe

więc

1

0

P

P

=


Zadanie 10

(

)

)

2

2

;

1

(

95

,

0

2

2

=

n

n

N

χ

b

χ

a

P

95

,

0

96

,

1

2

2

1

96

,

1

2

=



n

n

χ

P

(

)

=

=

2

2

2

2

2

1

1

)

1

(

X

X

n

S

σ

S

n

χ

i

(

)

(

)

(

)

1

2

2

96

,

1

2

2

96

,

1

1

96

,

1

2

2

1

96

,

1

2

2

2

2

2

+

+

n

n

X

X

σ

n

n

X

X

n

n

σ

X

X

i

i

i

(

)

(

)

2

2

2

2

2

2

96

,

1

1

2

2

96

,

1

1

σ

n

n

X

X

n

n

X

X

R

i

i

+

=


background image

=



+

=

2

2

2

2

1

2

2

96

,

1

1

)

1

(

2

2

96

,

1

1

)

1

(

σ

n

n

n

σ

n

n

n

σ

ER

(

)

(

)

01

,

0

)

2

2

(

96

,

1

)

1

(

2

2

92

,

3

)

1

(

2

1

)

2

2

(

96

,

1

)

1

(

2

2

96

,

1

1

)

1

(

2

2

96

,

1

1

)

1

(

2

1

2

2

2

2

=

=

+

=

n

n

n

n

n

n

n

n

n

n

n

n

(

)

( )

2

2

..

6832

,

8

2

2

92

,

3

96

,

1

2

1

)

1

(

2

2

)

1

(

92

,

3

02

,

0

=

=

n

n

n

n

n

n

2

2

2

2

2

2

92

,

3

2

2

92

,

3

0004

,

0

6832

,

8

00694656

,

0

0004

,

0

)

6832

,

8

(

)

2

2

(

92

,

3

0004

,

0

=

+

=

n

n

n

n

n

(

)

2

2

2

2

92

,

3

2

0004

,

0

6832

,

8

2

92

,

3

00694656

,

0

0004

,

0

+

+

n

n

Z tego:

75000

odpada

0

2

1

<

n

n


Wyszukiwarka

Podobne podstrony:
2000.04.08 prawdopodobie stwo i statystyka
2000 12 09 prawdopodobie stwo i statystykaid 21582
2009.04.06 prawdopodobie stwo i statystyka
2007.10.08 prawdopodobie stwo i statystyka
2009 04 06 prawdopodobie stwo i statystykaid 26658
2000.10.14 prawdopodobie stwo i statystyka
2000.01.15 prawdopodobie stwo i statystyka
2000.12.09 prawdopodobie stwo i statystyka
1997.04.05 prawdopodobie stwo i statystyka
2002.04.13 prawdopodobie stwo i statystyka
2000 01 15 prawdopodobie stwo i statystykaid 21565
2007 01 08 prawdopodobie stwo i statystykaid 25641
2000 06 17 prawdopodobie stwo i statystykaid 21573
2000 10 14 prawdopodobie stwo i statystykaid 21578
2002 04 13 prawdopodobie stwo i statystykaid 21638
2000 12 09 prawdopodobie stwo i statystykaid 21582

więcej podobnych podstron