background image

440 

Journal of Basic Microbiology 2007, 47, 440–443 

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

Short Communication 

Regulation of pyrimidine formation  
in Pseudomonas oryzihabitans
 

Thomas P. West 

Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA 

The regulation of pyrimidine formation in the opportunistic human pathogen Pseudomonas 
oryzihabitans was investigated at the level of enzyme synthesis and at the level of activity for the 
pyrimidine biosynthetic pathway enzyme aspartate transcarbamoylase. Although pyrimidine 
supplementation of succinate-grown P.  oryzihabitans cells produced little effect on the de  novo 
pyrimidine biosynthetic pathway enzyme activities, pyrimidine limitation experiments 
undertaken using an orotidine 5

′-monophosphate decarboxylase mutant strain isolated from  

P. oryzihabitans ATCC 43272 indicated that repression of enzyme synthesis by pyrimidines was 
occurring. Following pyrimidine limitation of the succinate-grown decarboxylase mutant 
strain cells, aspartate transcarbamoylase and dihydroorotase activities were found to increase 
by about 3-fold while dihydroorotate dehydrogenase and orotate phosphoribosyltransferase 
activities were also observed to increase relative to their activities in the mutant strain cells 
grown on excess uracil. At the level of enzyme activity, aspartate transcarbamoylase in  
P. oryzihabitans was strongly inhibited by pyrophosphate, ADP, ATP and GTP in the presence of 
saturating substrate concentrations. 

Keywords:  Pyrimidine / Biosynthesis / Regulation / Aspartate transcarbamoylase / Pseudomonas 

Received: February 02, 2007; returned for modification: February 19, 2007; accepted March 03, 2007 

DOI 10.1002/jobm.200710333 

Introduction

*

 

Despite the bacterium Pseudomonas  oryhabitans being 
considered an opportunistic human pathogen (Freney  
et al. 1988, Bendig et al. 1989, Marin et al. 2000), there is 
a paucity of knowledge regarding its nucleic acid meta-
bolism. With the increasing clinical significance of  
P. oryzihabitans in hospital infections, a better under-
standing of its nucleic acid metabolism would seem  
to be necessary to learn how it might be controlled 
biologically. With pyrimidine biosynthesis being an 
important component of nucleic acid metabolism, in-
vestigating the regulation of pyrimidine biosynthesis in  
P. oryzihabitans should provide new insights into how  
its nucleic acid metabolism is controlled. The de  novo 
pyrimidine biosynthetic pathway, consisting of five 
enzymes, culminates with the production of UMP.  
The five pathway enzymes include aspartate trans- 

                               
Correspondence:  Dr. T.P. West, Department of Biology and Micro-
biology, South Dakota State University, Box 2104, Brookings, SD 57007, 
USA 
E-mail: Thomas.West@sdstate.edu 

carbamoylase (EC 2.1.3.2), dihydroorotase (EC 3.5.2.3), 
dihydroorotate dehydrogenase (EC 

1.3.3.1), orotate 

phosphoribosyltransferase (EC 

2.4.2.10) and orotidine 

 

5

′-monophosphate (OMP) decarboxylase (EC 4.1.1.23). 

Each of the enzymes are encoded by the genes pyrB, 
pyrC,  pyrD,  pyrE and pyrF, respectively (O’Donovan and 
Neuhard 1970). Feedback inhibition of the initial en-
zyme aspartate transcarbamoylase has been demonstrat-
ed in pseudomonads (Adair and Jones 1972, Vickrey 
et al. 2002). Previous studies have explored pyrimidine 
biosynthesis in other known opportunistic pathogenic 
species of Pseudomonas  (Isaac and Holloway 1968, Chu 
and West 1990, West 1997, Santiago and West 2002, 
2003) but not in the emerging human pathogen 

 

P. oryzihabitans. Taxonomically, it has been shown that  
P. oryzihabitans is closely related to the human pathogen 
Pseudomonas aeruginosa (Anzai et  al. 1997). In this work, 
the regulation of pyrimidine biosynthesis by pyrimidi-
nes at the level of enzyme synthesis in P. oryzihabitans 
ATCC 43272 was investigated. Moreover, the regulation 
of the enzyme aspartate transcarbamoylase was studied 
to learn whether its activity was also controlled. 

background image

Journal of Basic Microbiology 2007, 47, 440–443 

Regulation of pyrimidine biosynthesis 

441 

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

Materials and methods 

Pseudomonas oryzihabitans ATCC 42372 (Kodama et al. 
1985) and the mutant strain PT117 were used in this 
study. The OMP decarboxylase mutant strain of P. oryzi-
habitans ATCC 42372, designated PT 117, was isolated by 
ethylmethane sulfonate mutagenesis and resistance to 
5-fluoroorotic acid as reported previously (Santiago and 
West 2002). The strains were grown in a modified 
minimal medium as has been described previously 
(West 1989). Succinate (0.4%) was used as the carbon 
source. Batch cultures (25 ml) were inoculated in sterile 
125 ml Erlenmeyer flasks using overnight cultures. 
When a pyrimidine base was supplemented, a concen-
tration of 50 mg l

–1

 was utilized. All cultures were 

shaken (200 rpm) at 30 °C. Growth was followed spec-
trophotometrically at 600 nm. 
  To prepare the P.  oryzihabitans cell extracts used  
to assay the de  novo pyrimidine biosynthetic pathway 
enzyme activities, three separate 25 

ml cultures 

 

were used. The cells were collected by centrifugation 
during late exponential phase and washed. During the 
pyrimidine limitation experiments, strain PT 117 was 
grown in succinate minimal medium containing 
50 mg l

–1

 uracil to the late exponential phase of growth. 

After collecting the cells, they were washed and resus-
pended in succinate minimal medium. After 1 or 2 h  
of pyrimidine limitation at 30 

°C, the cells were 

 

collected by centrifugation and washed. The wash- 
ed cells were resuspended in 2.5 ml of 20 mM Tris-HCl 
buffer (pH 8.0) containing 1 mM 2-mercaptoethanol. 
Each cell suspension was subjected to ultrasonic 

 

disruption for a total of 4 min (30 s bursts) in ice and 
the cell extracts were centrifuged at 1,930 

× g  

for 15 min at 4 °C. Following dialysis of each extract  
for 18 

h against resuspension buffer (300 

ml) at 

 

4 °C,  the  de novo pathway enzyme activities were deter-
mined. Aspartate transcarbamoylase activity was as-
sayed at 30 °C using a reaction mix (1 ml) that con-
tained 0.1 M Tris-HCl buffer (pH 8.5), 10 mM L-aspartate 
(pH 8.5), 1 mM dilithium carbamoylphosphate and cell 
extract (West 1994). An effector concentration of 5 mM 
was present in the reaction mix. The concentration  
of carbamoylaspartate was measured according to 
method I of Prescott and Jones (1969). The activities  
of dihydroorotase, dihydroorotate dehydrogenase, oro-
tate phosphoribosyltransferase and OMP decarboxy- 
lase were assayed at 30 °C as previously described 
(West 1997). Protein was determined by the method of 
Bradford (1976) using lysozyme as the standard. Specific 
activity was expressed as nmol · min

–1 

· (mg  protein)

–1

 at 

30 °C. 

Results and discussion 

It was determined that the five de novo pyrimidine bio-
synthetic pathway enzyme activities were detectable in 
the P. oryzihabitans ATCC 43272 cells (Table 1). The effect 
of supplementing pyrimidine bases to the succinate-
grown wild type strain cells (generation time 240 min) 
on its pathway enzyme activities was investigated. The 
addition of orotic acid (generation time 234 min) or 
uracil to the medium (generation time 246 min) re-
sulted in a slight increase in transcarbamoylase activity 
relative to the activity in the unsupplemented cells 
(Table 1). Orotic acid inclusion in the medium elevated 
dihydroorotase activity compared to its activity in cells 
grown with no supplement (Table 1). Dihydroorotase 
activity was decreased slightly after uracil addition 
relative to its activity in cells grown in the absence of a 
pyrimidine base (Table 1). Orotic acid or uracil supple-
mentation of the medium increased dehydrogenase 
activity by at least 1.5-fold compared to its activity in 
the cells grown in unsupplemented medium (Table 1). 
Addition of either pyrimidine base to the culture me-
dium resulted in a slight increase in orotate phosphori-
bosyltransferase activity (Table 1). In the orotic acid-
grown cells of the P.  oryzihabitans wild-type strain, OMP 
decarboxylase activity was depressed by more than two-
fold relative to its activity in unsupplemented cells 
(Table 1). In contrast, the decarboxylase activity in the 
uracil-grown cells of P. oryzihabitans was elevated slightly 
compared to its activity in the unsupplemented medium. 
  An OMP decarboxylase mutant strain of P.  oryzihabi-
tans, designated PT 

117, was isolated by chemical 

mutagenesis and resistance to 5-fluoroorotic acid 
(Santiago and West 2002). Decarboxylase activity in the 
mutant strain grown in uracil-containing medium 
(generation time 259 min) was not detectable (Table 1). 
The mutant strain was found to utilize uracil, cytosine, 
uridine or cytidine as a pyrimidine source. With 

 

the isolation of the mutant strain, it was possible to 
undertake pyrimidine limitation experiments to 

 

learn whether the pyrimidine biosynthetic pathway in  
P. oryzihabitans is controlled at the level of enzyme syn-
thesis. A prior investigation has shown that the depres-
sion of the pyrimidine nucleotide pools caused by 
pyrimidine limitation of auxotrophic strains can pro-
duce pyrimidine pathway enzyme derepression in bac-
teria (West et al. 1983). After pyrimidine limitation of 
strain PT 117 cells for 1 h, aspartate transcarbamoylase 
activity increased by 2.8-fold compared to its activity in 
uracil-grown cells (Table 1). After 2 h of pyrimidine 
limitation, transcarbamoylase activity rose by 3.2-fold 
compared to the activity of the cells grown on saturat- 

background image

442 T. 

P. 

West 

Journal of Basic Microbiology 2007, 47, 440 – 443 

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

Table 1. Effect of pyrimidine supplementation and pyrimidine limitation on de  novo pyrimidine biosynthetic enzyme activities in  
Poryzihabitans strains. 

Enzyme

 

Specific activity of strain

a

 

 ATCC 

43272 

PT 

117 

 No 

addition

b

 Orotic 

acid  Uracil 

Excess 

uracil

c

 Limiting 

uracil 

(1 h) 

Limiting  uracil 
(2 h) 

Aspartate transcarbamoylase

 

50.0 (1.1)

 

67.5 (1.0)

 

61.8 (0.6)

 

20.4 (0.7)

 

57.3 (0.6)

 

65.5 (0.5)

 

Dihydroorotase

 

46.0 (0.4)

 

55.8 (0.6)

 

43.3 (0.3)

 

19.9 (0.8)

 

63.1 (0.8)

 

60.7 (0.1)

 

Dihydroorotate dehydrogenase    1.8 (0.0) 

  3.5 (0.1) 

  2.7 (0.0) 

  1.9 (0.0) 

  1.9 (0.1) 

  2.4 (0.1) 

Orotate 
phosphoribosyltransferase 

27.8 (0.3)

 

34.6 (0.6)

 

35.6 (0.4)

 

23.6 (0.5)

 

31.9 (0.8)

 

30.0 (0.3)

 

OMP decarboxylase

d

 

12.4 (0.5)

 

 5.1 (0.1)

 

14.3 (0.2)

 

<0.7 (0.1)

 

<1.0 (0.3)

 

<0.7 (0.1)

 

Expressed as nmol · min

–1

 · (mg  protein)

–1

. Results indicate the mean of 3 separate trials and the number in parentheses 

represents the standard deviation of the mean. 

The strain was grown in minimal medium alone or medium containing 50 mg l

–1

 orotic acid or uracil at 30 °C. 

The strain was grown at 30 °C in minimal medium with excess uracil (50 mg l

–1

) or starved for uracil for 1 or 2 h under 

limiting uracil growth conditions. 

d

   OMP decarboxylase, orotidine 5

-monophosphate decarboxylase. 

 
 
ing uracil levels (Table 1). In a similar fashion, dihydro-
orotase activity in the mutant cells limited for 
pyrimidines for 1 or 2 h elevated by more than 3-fold 
relative to its activity in the uracil-grown cells (Table 1). 
Pyrimidine limitation of strain PT 117 cells for 1 h had 
no effect on dehydrogenase activity while 2 h of pyrimi-
dine limitation increased its activity slightly compared 
to its activity in the cells supplemented with uracil 
(Table 1). Pyrimidine limitation of the mutant cells for 
1 or 2 h was found to slightly increase orotate phospho-
ribosyltransferase activity relative to the cells grown 
with excess uracil (Table 1). By virtue of the pyrimidine 
limitation experiments, it appeared that de  novo biosyn-
thetic enzyme synthesis could be derepressed which sug-
gested that repression by a pyrimidine-related compound 
at the transcriptional level was occurring. 
 With 

P.  oryzihabitans being an opportunistic human 

pathogen, its transcriptional regulation of the pyrimi-
dine biosynthetic pathway was compared to the human 
pathogen  Pseudomonas  aeruginosa because both species 
have been shown to be taxonomically-related (Anzai  
et  al. 1997). Similar to the finding observed for the de 
novo pyrimidine biosynthetic enzyme activities in 

 

P.  oryzihabitans (Table 1), the pathway enzyme activities 
were not repressible by a uracil-related compound in  
P.  aeruginosa (Isaac and Holloway 1968). While pyrimi-
dine limitation of pyr mutant strains of P. aeruginosa did 
not derepress its de novo pyrimidine biosynthetic path-
way enzyme activities (Isaac and Holloway 

1968), 

derepression of the de  novo pyrimidine biosynthetic 
pathway enzyme activities was observed in the P. oryzi-
habitans strain PT 117 cells (Table 1). More than a three-
fold derepression of aspartate transcarbamoylase and 

dihydroorotase activities was noted in the pyrimidine-
limited PT 117 cells compared to the uracil-grown mu-
tant cells (Table 1). In contrast to P. aeruginosa, it ap-
peared that de  novo pyrimidine biosynthetic pathway 
enzyme synthesis in P. oryzihabitans was subject to regu-
lation by pyrimidines.  
 With 

the 

de  novo pyrimidine biosynthetic pathway 

enzyme aspartate transcarbamoylase being highly regu-
lated in pseudomonads (Adair and Jones 1972, Vickrey 
et al. 2002), the control of its in vitro activity was studied 
in P. oryzihabitans (Table 2). The K

m

 (standard deviation) 

of aspartate transcarbamoylase for its substrate 

 

L-aspartate or carbamoylphosphate was determined to 
be 1.18 mM (0.08) or 0.45 mM (0.08), respectively, in 
P. oryzihabitans  ATCC 43272 cell extracts. The K

m

 of the  

 

Table 2.  Effect of possible effectors on aspartate transcarba-
moylase activity in Pseudomonas oryzihabitans ATCC 43272. 

Effector

a

 Specific 

activity

b

 Relative 

activity

c

 

Control 50.6 

(0.2) 

100 

Pyrophosphate  

1.0 

(0.1) 

 

UDP  

4.7 

(0.1) 

 

CDP 30.5 

(0.8) 

 

60 

ADP  

0.8 

(0.1) 

 

GDP 21.6 

(0.2) 

 

43 

UTP  

3.1 

(0.2) 

 

CTP 

 8.5 (0.4) 

 17 

ATP  

0.3 

(0.1) 

 

GTP  

0.6 

(0.2) 

 

The concentration of each effector was 5 mM. 

Expressed as nmol carbamoylaspartate formed · min

–1

 · (mg 

protein)

–1

 at 30 °C. Results indicate the mean of 3 separate 

trials and the number in parentheses represents the 
standard deviation of the mean. 

Expressed in %. 

background image

Journal of Basic Microbiology 2007, 47, 440–443 

Regulation of pyrimidine biosynthesis 

443 

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

P. oryzihabitans  transcarbamoylase for carbamoylphos-
phate was similar to what was observed for the 

 

P. aeruginosa aspartate transcarbamoylase while its K

m

 

for L-aspartate was much lower (Vickrey et al. 2002). 
The K

m

 of the P. aeruginosa aspartate transcarbamoylase 

for its substrate L-aspartate or carbamoylphosphate was 
2.6 mM or 0.49 mM, respectively (Vickrey et al. 2002) 
Putative transcarbamoylase effectors were investigat- 
ed under saturating substrate concentrations where 
10 

mM L-aspartate and 1 

mM carbamoylphosphate 

were present in the assay mix (Table 2). Relative to the 
effectors studied (Table 2), the most potent inhibitors of 
the P. oryzihabitans aspartate transcarbamoylase activity 
were ATP, GTP, ADP and pyrophosphate although all 
the ribonucleotide triphosphates were highly inhibi-
tory. Similar to P. oryzihabitans, the transcarbamoylase 
activity of the taxonomically-related species P. aerugi-
nosa, was also inhibited by the ribonucleotide triphos-
phates (Vickrey et al. 2002). 
  In conclusion, pyrimidine biosynthesis in P. oryzihabi-
tans  was repressible by a pyrimidine-related compound 
at the level of enzyme synthesis and its aspartate trans-
carbamoylase activity was highly regulated by pyro-
phosphate and ribonucleotides. Although control of 
pyrimidine biosynthetic enzyme synthesis existed for  
P.  oryzihabitans  but not for P.  aeruginosa, both transcar-
bamoylases from these closely-related pseudomonads 
exhibited a similar pattern of effector inhibition. The 
findings of this study should be helpful in understand-
ing how nucleic acid metabolism in the emerging, hu-
man pathogen P. oryzihabitans is regulated. 

Acknowledgements 

This research work was supported by funds from the 
South Dakota Agricultural Experiment Station. The 
technical assistance of Beth Reed Nemmers was appre-
ciated. 

References 

Adair, L.B. and Jones, M.E., 1972. Purification and characte-

ristics of aspartate transcarbamoylase from Pseudomonas flu-
orescens. J. Biol. Chem., 247, 2308 – 2315. 

Anzai, Y., Kudo, Y. and Oyaizu, H., 1997. The phylogeny of the 

genera  Chryseomonas,  Flavimonas, and Pseudomonas supports 
synonomy of these three genera. Int. J. Syst. Bacteriol., 47, 
249 – 251. 

Bendig, J.W.A., Mayes, P.J., Eyers, D.E., Holmes, B. and Chin, 

T.T.L., 1989. Flavimonas oryzihabitans (Pseudomonas oryzihabi-
tans; CDC Group Ve-2): an emerging pathogen in peritonitis 
related to continuous ambulatory peritoneal dialysis? 

 

J. Clin. Microbiol., 27, 217 – 218. 

Bradford, M.M., 1976. A rapid and sensitive method for the 

quantitation of microgram quantities of protein utilizing 
the principle of dye-binding. Anal. Biochem., 72, 248 – 254. 

Chu, C.-P. and West, T.P., 1990. Pyrimidine biosynthetic path-

way of Pseudomonas fluorescens. J. Gen. Microbiol., 136, 875 –
880. 

Freney, J., Hansen, W., Etienne, J., Vandenesch, F. and Fleuret-

te, J., 1988. Postoperative infant septicemia caused by Pseu-
domonas luteola (CDC Group Ve-1) and Pseudomonas oryzihabi-
tans (CDC Group Ve-2). J. Clin. Microbiol., 26, 1241 – 1243. 

Isaac, J.H. and Holloway, B.W., 1968. Control of pyrimidine 

biosynthesis in Pseudomonas aeruginosa. J. Bacteriol., 96, 
1732 – 1741. 

Kodama, K., Kimura, N. and Komagata, K., 1985. Two new 

species of Pseudomonas:  P.  oryzihabitans isolated from rice 
paddy and clinical specimens and P.  luteola  isolated from 
clinical secimens. Int. J. Syst. Bacteriol., 35, 467 – 474. 

Marin, M., Garcia de Viedma, D., Martin-Rabadan, P., Rodrigu-

ez-Creixems, M. and Bouza, E., 2000. Infection of Hickman 
catheter by Pseudomonas (formerly Flavimonas)  oryzihabitans 
traced to a synthetic bath sponge. J. Clin. Microbiol., 38, 
4577 – 4579. 

O’Donovan, G.A. and Neuhard, J., 1970. Pyrimidine metabo-

lism in microorganisms. Bacteriol. Rev., 34, 278 – 343. 

Prescott, L.M. and Jones, M.E., 1969. Modified methods for the 

determination of carbamyl aspartate. Anal. Biochem., 32, 
408 – 419. 

Santiago, M.F. and West, T.P., 2002. Regulation of pyrimidine 

synthesis in Pseudomonas mendocina. J. Basic Microbiol., 42, 
75 – 79. 

Santiago, M.F. and West, T.P., 2003. Effect of carbon source on 

pyrimidine biosynthesis in Pseudomonas alcaligenes ATCC 
14909. Microbiol. Res., 158, 195 – 199. 

Vickrey, J.F., Herve, G. and Evans, D.R., 2002. Pseudomonas 

aeruginosa aspartate transcarbamoylase. Characterization  of 
its catalytic and regulatory properties. J. Biol. Chem., 277, 
24490 – 24498. 

West, T.P., 1989. Isolation and characterization of thymidylate 

synthetase mutants of Xanthomonas maltophilia. Arch. Micro-
biol., 151, 220 – 222. 

West, T.P., 1994. Control of the pyrimidine biosynthetic 

pathway in Pseudomonas pseudoalcaligenes. Arch. Microbiol., 
162, 75 – 79. 

West, T.P., 1997. Pyrimidine biosynthesis in Pseudomonas  

stutzeri ATCC 17588. Antonie van Leeuwenhoek, 72,  175 –
181. 

West, T.P., Herlick, S.A. and O’Donovan, G.A., 1983. Inverse 

relationship between thymidylate synthetase and cytidine 
triphosphate synthetase activities during pyrimidine limi-
tation in Salmonella typhiumrium. FEMS Microbiol. Lett., 18, 
275 – 278. 

((Funded by:● South Dakota Agricultural Ex-

periment Station))