n + 1
an = .
2n+1 + 1
{an}
n an+1 - an > 0
n an+1 - an < 0
n + 2 n + 1 (n + 2)(2n+1 + 1) - (n + 1)(2n+2 + 1)
an+1 - an = - = =
2n+2 + 1 2n+1 + 1 (2n+1 + 1)(2n+2 + 1)
n2n+1 + n + 2n+2 + 2 - n2n+2 - n - 2n+2 - 1
= =
(2n+1 + 1)(2n+2 + 1)
n2n+1 - n2n+1 · 2 + 1 1 - n2n+1
= = .
(2n+1 + 1)(2n+2 + 1) (2n+1 + 1)(2n+2 + 1)
an+1 - an < 0
1
an = .
(2n + 1)!
1
an+1 (2n+3)! (2n + 1)! (2n + 1)! 1
= = = = .
1
an (2n+1)! (2n + 3)! (2n + 1)!(2n + 2)(2n + 3) (2n + 2)(2n + 3)
an+1
an
0 < an < 1
{an}
"
n
" an = 5n + sin 3n
n
" L " R " n " N 5n + sin 3n < L
" " "
n
n n
5n + sin 3n 5n + 1 6n = 6,
L := 6
2n + 5
lim = 2.
n"
n + 1
µ > 0 n0
|an - 2| < µ
2n + 5
- 2 < µ,
n + 1
3
< µ,
n + 1
3
< µ,
n + 1
n + 1 1
> ,
3 µ
3
n > - 1.
µ
3 3 3
- 1 + 1 - 1 + 1 > - 1
µ µ µ
3 2
n0 := - 1 + 1 µ = n0 = 7
µ 5
2n+5
n+1
2
2
5
" "
lim n 9n2 + 1 - 9n2 - 1 .
n"
n " [" - "]
a2 - b2
a - b = .
a + b
" "
" "
( 9n2 + 1)2 - ( 9n2 - 1)2
lim n 9n2 + 1 - 9n2 - 1 = lim n · " " =
n" n"
9n2 + 1 + 9n2 - 1
2n
9n2 + 1 - 9n2 + 1 2n
n
" "
= lim n · " " = lim " " = lim =
9n2+1 9n2-1
n" n" n"
9n2 + 1 + 9n2 - 1 9n2 + 1 + 9n2 - 1
+
n n
2 2 1
= lim = " " = .
n"
1 1 3
9 + 9
9 + + 9 -
n2 n2
"
n
lim 7n3 + 3n2 - 10n + 20.
n"
n
"
3 10 20
n
n
lim 7n3 + 3n2 - 10n + 20 = lim n3 7 + - + =
n" n"
n n2 n3
"
3 10 20
n
n
= lim n3 · 7 + - + =
n"
n n2 n3
"
3 10 20
n
n
= lim ( n)3 · 7 + - + .
n"
n n2 n3
"
3 10 20
3
n
n
n - 1 7 + - + - 1.
n" n"
n n2 n3
"
"
3 10 20
n n
n
lim 7n3 + 3n2 - 10n + 20 = lim ( n)3 · lim 7 + - + = 1 · 1 = 1.
n" n" n"
n n2 n3
"
n
lim 7n + 30 · 2n + n3 + 4 cos n.
n"
n
"
2 n3 1
n
n
lim 7n + 30 · 2n + n3 + 4 cos n = lim 7n 1 + 30 · + + 4 · · cos n =
n" n"
7 7n 7n
n
"
2 n3 1
n
n
= lim 7n · 1 + 30 · + + 4 · · cos n =
n"
7 7n 7n
n
2 n3 1
n
= lim 7 · 1 + 30 · + + 4 · · cos n
n"
7 7n 7n
nk n3
lim = 0 k a - 0
n" n"
an 7n
n
1 2
- 0 - 0
n" n"
7n 7
{an} {bn}
1
lim anbn = 0 · cos n - 0
n" n"
7n
"
n
lim 7n + 30 · 2n + n3 + 4 cos n = 7
n"
"
n
lim 7n + 30 · 2n + n3 + 4 cos n.
n"
" " "
n n
n
7n d" 7n + 30 · 2n + n3 + 4 cos n d" 7n + 30 · 7n + 7n + 4 · 7n
" " " " "
n n n n
n
lim 7n + 30 · 7n + 7n + 4 · 7n = lim 36 · 7n = lim 36 · ·7n = lim 36 · 7 =
n" n" n" n"
1 · 7 = 7
2n
lim n · sin .
n"
1 + n2
[" · 0]
sin an
lim = 1
an0
an
2n 2n
sin sin
2n 2n 2n2
1+n2 1+n2
lim n · sin = lim n · · = lim · = 1 · 2 = 2,
2n 2n
n" n" n"
1 + n2 1 + n2 1 + n2
1+n2 1+n2
2n
- 0
n"
1 + n2
n!
an = .
nn
(n+1)!
an+1 (n + 1)! nn (n + 1)! nn
(n+1)n+1
lim = lim = lim = lim =
n!
n" n" n" n"
an (n + 1)n+1 n! n! (n + 1)n+1
nn
n
(n + 1) n! nn nn n
= lim = lim = lim =
n" n" n"
n! (n + 1)n(n + 1) (n + 1)n n + 1
-n n -1
n + 1 n + 1 1
= lim = lim = e-1 = < 1.
n" n"
n n e
an+1
lim < 1
n"
an
an+1
lim an = 0 lim > 1 lim an = "
n" n" n"
an
n!
lim an = lim = 0
n" n"
nn
Wyszukiwarka
Podobne podstrony:
Ciagi liczbowe przykladyCiągi liczboweCiągi liczboweCiagi liczbowe09 Ciagi liczbowe odpodp ciągi liczboweciagi liczboweCiagi liczbowe zadaniaCiagi liczbowe R1 OdpowiedziMatematyka II (Ćw) Lista 02 Ciągi liczbowe09 Ciagi liczboweciagi liczbowe testCiągi liczboweciagi liczbowe5 Ciągi liczbowezadania ciagi liczboweCiągi liczbowe zadaniawięcej podobnych podstron