Mathcad obliczenia


Design the multi-storey building with the flat slab
construction
DATA:
- site location: Lębork
- structural class: S6
- exposure class: X0
kN
qk := 4.0
- category of use: D1 - general retail shops
m2
- concrete: C20/25
- steel grade: BSt500, class: C
lcol := 3.7m
n := 3
lx := 5.2m
nx := 5
ly := 5.8m
ny := 5
qf := 180kPa
Ly := ly Å" ny = 29 m
Lx := lx Å" nx = 26 m
H := lcol Å" n = 11.1 m
1. PRELIMINARY ANALYSIS AND DESIGN
1.1. Preliminary analysis and design - first floor plan of building
hslab := 0.24m
- Columns
ëÅ‚ öÅ‚
ly lx lcol
ëÅ‚ öÅ‚
lcmx := 0.5hslab = 0.12 m
bcol := max , , , 35cm = 0.35 m
ìÅ‚ ÷Å‚
20 20 15
íÅ‚ Å‚Å‚
hcol := bcol = 0.35 m
- Cantiliver slab
lcx := 0.15 Å" lx = 0.78 m lcx := 0.25 Å" lx = 1.3 m
lcx := 1m
lcy := 0.15 Å" ly = 0.87 m lcy := 0.25 Å" ly = 1.45 m
lcy := 1.15m
- Total depth of solid RC flat slab:
lmax := max lx, ly = 5.8 m
( )
lmax lmax
ëÅ‚ öÅ‚
hslab := max , , 0.16m = 0.24 m
ìÅ‚ ÷Å‚
24 30
íÅ‚ Å‚Å‚
1.1.1 Non bearing walls - curtain walls
Clinker brick 0,120m
1 2,28
19kN/m3x0,12m
Foamed polystyrene 0,100m
2 0,045
0,45kN/m3x0,1m
3 brick wall (porotherm) 0,250m 1,994
Cement lime plaster 0,015m
4 0,285
19kN/m3x0,015m
gk[kN/m2] 4,604
gksup[kN/m2] Å‚=1,1
5,0644
gkinf[kN/m2] Å‚=0,9
4,1436
kN
gd.sup.curt.1wall := 5.064
kN
gd.supcurt := gd.sup.curt.1wall Å" lcol - hslab
( )
m2 gd.supcurt := 19.4
m
kN
kN
gd.inf.curt.1wall := 4.144
gd.infcurt := gd.inf.curt.1wall Å" lcol - hslab = 14.331 Å"
( )
m2
m
1.2 Preliminary design cross section of building
1.2.1 Snow loads PN EN 1991-1-3
Localization : Lębork III --> 32m n.p.m.
S := źi Å" Ce Å" Ct Å" sk
źi
A := 32
> 1.2
sk := 0.006 Å" A - 0.6 = -0.408
kN kN
>
sk := 1.2 1.2
m2 m2
Ce := 1
Ct := 1
ź1 := 0.4
ź2 := 0.8
Å‚f := 1.5
kN kN
sd1 := Å‚f Å" Ce Å" Ct Å" sk Å" ź1 = 0.72 Å" sd2 := Å‚f Å" Ce Å" Ct Å" sk Å" ź2 = 1.44 Å"
m2 m2
1.2.2 Roof structure
1 Water proof insulation x2 0,12
Thermal insulation PAROC ROS 30 0,02m
2 0,036
1,8kN/m3x0,02m
3 Vapour insulation 0,06
Thermal insulation PAROC ROB 60 0,16m
4 2,88
1,8kN/m3x0,16m
Weak concrete 0,04m
5 0,84
21kN/m3x0,04m
Fall layer - mineral wool
6 0,324
1,8kN/m3x0,18m
RC slab 0,23m
7 5,75
25kN/m3x0,23m
Cement lime plaster 0,015m
8 0,285
19kN/m3x0,015m
gk[kN/m2] 10,295
gksup[kN/m2] Å‚=1,1
11,3245
gkinf[kN/m2] Å‚=0,9
9,2655
kN
gdinf.roof := 6.67
m2
kN
gdsup.roof := 1.35 Å" gdinf.roof = 9.005 Å"
m2
1.2.3. Floor layers
Flooring panels 0,015m
1 0,105
7,0kN/m3x0,015m
Cement mortar 0,04m
2 0,84
21kN/m3x0,04m
Polystyrene foam 0,03m
3 0,014
0,45kN/m3x0,03m
RC slab 0,23m
4 5,75
25kN/m3x0,23m
Cement lime plaster 0,015m
5 0,285
19kN/m3x0,015m
gk[kN/m2] 6,994
gksup[kN/m2] Å‚=1,1 7,6934
gkinf[kN/m2] Å‚=0,9 6,2946
kN
gdinf.floor := 7.59
m2
kN
gdsup.floor := 1.5 Å" gdinf.floor = 11.385 Å"
m2
kN
gdinf.gf := 6.83
m2
kN
gdsup.gf := 1.5 Å" gdinf.gf = 10.245 Å"
m2
1.2.5 Imposed loads
Cathegory of load area D1
kN
qk := 4 Å‚f = 1.5
m2
kN
qd := qk Å" Å‚f = 6 Å"
m2
1.2.4. Stairs
b := 320mm
h := 160mm
2 Å" h + b = 0.64 m
1.2.5. Column self weight
kN
Gdinf := 25 Å" bcol Å" hcol Å" lcol = 11.331 Å" kN
m3
Gdsup := Gdinf Å" 1.5 = 16.997 Å" kN
1.2.7 Spot footing
Nd := + gdsup.roof + gdsup.gf + qd Å" n + gdsup.floor Å" (n - 1) Å" lx Å" ly + n Å" Gdsup = 1.905 × 103 Å" kN
îÅ‚sd2 Å‚Å‚
ðÅ‚ ûÅ‚
Nd
>
= 15.548 Å" MPa fcd := 14.3MPa
bcol Å" hcol
Nd
hcol := = 0.381 m
bcol Å" fcd
hcol := 0.4m bcol := 0.4m
kN
Gdsup := 1.5 Å" 25 Å" bcol Å" hcol Å" lcol = 22.2 Å" kN
m3
Nd := + gdsup.roof + gdsup.gf + qd Å" n + gdsup.floor Å" (n - 1) Å" lx Å" ly + n Å" Gdsup = 1.92 × 103 Å" kN
îÅ‚sd2 Å‚Å‚
ðÅ‚ ûÅ‚
kN kN
Å‚soil := 20 qf = 180 Å" m := 0.81 hdf := 1.3m
m3 m2
Nd
Af := = 16.029 m2
m Å" qf - Å‚soil Å" hdf
B := Af = 4.004 m
B := 4m
hssf1 := 0.3 Å" B - bcol = 1.08 m
( )
->
hssf := 1.2m
hssf2 := 0.4 Å" B - bcol = 1.44 m
( )
2 STRUCTURAL ANALYSIS - "EQUIVALENT FRAME METHOD"
2.1. Specification of actions on frame 1 (internal frame along x axis) - middle strip
2.1.1. Permanent action.
gdsup.floor Å" ly gdsup.roof Å" ly
kN kN
gd.supcurt Å" ly
= 44.022 Å" = 38.686 Å"
= 83.348 Å" kN
1.5 m 1.35 m
1.35
Gdsup kN gdsup.gf Å" ly Å" lx
= 4 Å" = 205.993 Å" kN
gd.supcurt Å" ly Å" lcx
lcol Å" 1.5 m 1.5
= 83.348 Å" kN Å" m
1.35
2.1.2. Imposed load on building and movable partitions
kN
kN kN
qd = 6 Å"
gd.partition := 0.375 gd.partition Å" ly = 2.175 Å"
m2
m
m2
kN kN
Assumed self weight of partition < 3 kN/m - qk' := 1.2 qk Å" ly + qk' Å" ly = 30.16 Å"
( )
m
m2
2.1.3. Snow load.
2.1.4. Snow load-on face.
sd1 Å" ly sd2 Å" ly
kN kN
= 2.784 Å" = 5.568 Å"
1.5 m 1.5 m
2.1.5. Wind action.
2.1.5.1. Wind action - wind from the left.
b := 29m
cs := 1 cd := 1 cs Å" cd = 1
h := 11.1m
kN
cpi := 0.2
qp := 0.64
e := min(b , 2 Å" h) = 22.2 m
m2
roof
kN e
cpeG := -1.2 wGk := cs Å" cd Å" qp Å" cpeG - cpi Å" ly = 5.197 Å" a := = 2.22 m
m 10
kN e e
cpeH := -0.7 wHk := cs Å" cd Å" qp Å" cpeH - cpi Å" ly = 3.341 Å" a := - = 8.88 m
m 2 10
kN
cpeI := -0.2 wIk := cs Å" cd Å" qp Å" cpeI - cpi Å" ly = 1.485 Å"
m
left wall
cpeD := 0.8 wDk := cs Å" cd Å" qp Å" cpeD - cpi Å" ly Å" lcol = 8.241 Å" kN
right wall
cpeE := -0.5 wEk := cs Å" cd Å" qp Å" cpeE - cpi Å" ly Å" lcol = 9.614 Å" kN
b := 29m
cs := 1 cd := 1 cs Å" cd = 1
h := 11.1m
kN
cpi := -0.3
qp := 0.64
e := min(b , 2 Å" h) = 22.2 m
m2
roof
kN e
cpeG := -1.2 wGk := cs Å" cd Å" qp Å" cpeG - cpi Å" ly = 3.341 Å" a := = 2.22 m
m 10
kN e e
cpeH := -0.7 wHk := cs Å" cd Å" qp Å" cpeH - cpi Å" ly = 1.485 Å" a := - = 8.88 m
m 2 10
kN
cpeI := -0.2 wIk := cs Å" cd Å" qp Å" cpeI - cpi Å" ly = 0.371 Å"
m
left wall
cpeD := 0.8 wDk := cs Å" cd Å" qp Å" cpeD - cpi Å" ly Å" lcol = 15.108 Å" kN
right wall
cpeE := -0.5 wEk := cs Å" cd Å" qp Å" cpeE - cpi Å" ly Å" lcol = 2.747 Å" kN
2.1.5.2. Wind action - wind from the right - mirror of previous scheme
2.1.5.3. Wind action - front wind.
b := 26m h := 11.1m e := min(b , 2 Å" h) = 22.2 m
cpi := 0.2
roof
kN
cpeH := -0.7 wHk := cs Å" cd Å" qp Å" cpeH - cpi Å" ly = 3.341 Å"
m
wall
cpeB := -0.8 wBk := cs Å" cd Å" qp Å" cpeB - cpi Å" ly Å" lcol = 13.734 Å" kN
cpi := -0.3
b := 26m h := 11.1m e := min(b , 2 Å" h) = 22.2 m
roof
kN
cpeH := -0.7 wHk := cs Å" cd Å" qp Å" cpeH - cpi Å" ly = 1.485 Å"
m
wall
cpeB := -0.8 wBk := cs Å" cd Å" qp Å" cpeB - cpi Å" ly Å" lcol = 6.867 Å" kN
2.1.6. Thermal action.
"t1 := -15 Å" °C "t2 := 15 Å" °C
°C °C
2.2. Specification of actions on frame 2 (internal frame along y axis) - middle strip
2.2.1. Permanent action.
gd.supcurt Å" lx gdsup.floor Å" lx gdsup.roof Å" lx
kN kN
= 74.726 Å" kN = 39.468 Å" = 34.684 Å"
1.35 1.5 m 1.35 m
Gdsup kN
gdsup.gf Å" lx Å" ly
kN
= 4 Å"
= 205.993 m Å"
lcol Å" 1.5 m
1.5 m
2.2.2. Imposed load on building and movable partitions
kN kN kN
gd.partition := 0.375 gd.partition Å" lx = 1.95 Å" qd = 6 Å"
m
m2 m2
kN kN
Assumed self weight of partition < 2 kN/m - qk' := 0.8 qk Å" lx + qk' Å" lx = 24.96 Å"
( )
m
m2
2.2.3. Snow load.
2.2.4. Snow load-on face.
sd1 Å" lx sd2 Å" lx
kN kN
= 2.496 Å" = 4.992 Å"
1.5 m 1.5 m
2.2.5. Wind action.
2.2.5.1. Wind action - wind from the left.
:= := := , Å" =
b := 26m h := 11.1m e := min(b , 2 Å" h) = 22.2 m
cpi := 0.2
roof
kN e
cpeG := -1.2 wGk := cs Å" cd Å" qp Å" cpeG - cpi Å" lx = 4.659 Å" a := = 2.22 m
m 10
kN e e
cpeH := -0.7 wHk := cs Å" cd Å" qp Å" cpeH - cpi Å" lx = 2.995 Å" a := - = 8.88 m
m 2 10
kN
cpeI := -0.2 wIk := cs Å" cd Å" qp Å" cpeI - cpi Å" lx = 1.331 Å"
m
left wall
cpeD := 0.8 wDk := cs Å" cd Å" qp Å" cpeD - cpi Å" lx Å" lcol = 7.388 Å" kN
right wall
cpeE := -0.5 wEk := cs Å" cd Å" qp Å" cpeE - cpi Å" lx Å" lcol = 8.62 Å" kN
cpi := -0.3
b := 26m h := 11.1m e := min(b , 2 Å" h) = 22.2 m
roof
kN e
cpeG := -1.2 wGk := cs Å" cd Å" qp Å" cpeG - cpi Å" lx = 2.995 Å" a := = 2.22 m
m 10
kN e e
cpeH := -0.7 wHk := cs Å" cd Å" qp Å" cpeH - cpi Å" lx = 1.331 Å" a := - = 8.88 m
m 2 10
kN
cpeI := -0.2 wIk := cs Å" cd Å" qp Å" cpeI - cpi Å" lx = 0.333 Å"
m
left wall
cpeD := 0.8 wDk := cs Å" cd Å" qp Å" cpeD - cpi Å" lx Å" lcol = 13.545 Å" kN
right wall
cpeE := -0.5 wEk := cs Å" cd Å" qp Å" cpeE - cpi Å" lx Å" lcol = 2.463 Å" kN
2.2.5.2. Wind action - wind from the right - mirror of previous scheme
2.2.5.3. Wind action - front wind.
b := 29m h := 11.1m e := min(b , 2 Å" h) = 22.2 m
cpi := 0.2
roof
kN
cpeH := -0.7 wHk := cs Å" cd Å" qp Å" cpeH - cpi Å" lx = 2.995 Å"
m
wall
cpeB := -0.8 wBk := cs Å" cd Å" qp Å" cpeB - cpi Å" lx Å" lcol = 12.314 Å" kN
cpi := -0.3
b := 29m h := 11.1m e := min(b , 2 Å" h) = 22.2 m
roof
kN
cpeH := -0.7 wHk := cs Å" cd Å" qp Å" cpeH - cpi Å" lx = 1.331 Å"
m
wall
cpeB := -0.8 wBk := cs Å" cd Å" qp Å" cpeB - cpi Å" lx Å" lcol = 6.157 Å" kN
2.2.6. Thermal action.
"t1 := -15 Å" °C
°C
"t2 := 15 Å" °C
°C
2.3. Specification of actions on frame 3 (edge frame along y axis)
2.3.1. Permanent action.
gdsup.floor Å" 0.5lx + lcx
( )
kN
gd.supcurt Å" 0.5lx + lcx
( )
= 27.324 Å"
= 51.733 Å" kN
1.5 m
1.35
Gdsup kN
gdsup.roof Å" 0.5lx + lcx gdsup.gf Å" 0.5lx + lcx
( ) ( )
kN kN
= 4 Å"
= 24.012 Å" = 24.588 Å"
lcol Å" 1.5 m
1.35 m 1.5 m
2.3.2. Imposed load on building and movable partitions
kN
kN kN
qd = 6 Å"
gd.partition := 0.375 gd.partition Å" 0.5lx + lcx = 1.35 Å"
( )
m2
m
m2
kN kN
Assumed self weight of partition < 2 kN/m - qk' := 0.8 Å" 0.5lx + lcx + qk' Å" 0.5lx + lcx = 17.28 Å"
( ) ( )ûÅ‚
îÅ‚qk Å‚Å‚
ðÅ‚
m
m2
2.3.3. Snow load.
2.3.4. Snow load-on face.
sd2 Å" 0.5lx + lcx
( )
kN
sd1 Å" 0.5lx + lcx
( )
kN
= 3.456 Å"
= 1.728 Å"
1.5 m
1.5 m
2.3.5. Wind action.
2.3.5.1. Wind action - wind from the left.
cpi := 0.2
b := 26m h := 11.1m e := min(b , 2 Å" h) = 22.2 m
roof
kN e
cpeF := -1.8 wFk := cs Å" cd Å" qp Å" cpeF - cpi Å" 0.5lx + lcx = 4.608 Å" a := = 2.22 m
( )
m 10
kN e e
cpeH := -0.7 wHk := cs Å" cd Å" qp Å" cpeH - cpi Å" 0.5lx + lcx = 2.074 Å" a := - = 8.88 m
( )
m 2 10
kN
cpeI := -0.2 wIk := cs Å" cd Å" qp Å" cpeI - cpi Å" 0.5lx + lcx = 0.922 Å"
( )
m
left wall
cpeD := 0.8 wDk := cs Å" cd Å" qp Å" cpeD - cpi Å" 0.5lx + lcx Å" lcol = 5.115 Å" kN
( )
right wall
cpeE := -0.5 wEk := cs Å" cd Å" qp Å" cpeE - cpi Å" 0.5lx + lcx Å" lcol = 5.967 Å" kN
( )
cpi := -0.3
b := 26m h := 11.1m e := min(b , 2 Å" h) = 22.2 m
roof
kN e
cpeF := -1.8 wFk := cs Å" cd Å" qp Å" cpeF - cpi Å" 0.5lx + lcx = 3.456 Å" a := = 2.22 m
( )
m 10
kN e e
cpeH := -0.7 wHk := cs Å" cd Å" qp Å" cpeH - cpi Å" 0.5lx + lcx = 0.922 Å" a := - = 8.88 m
( )
m 2 10
kN
cpeI := -0.2 wIk := cs Å" cd Å" qp Å" cpeI - cpi Å" 0.5lx + lcx = 0.23 Å"
( )
m
left wall
cpeD := 0.8 wDk := cs Å" cd Å" qp Å" cpeD - cpi Å" 0.5lx + lcx Å" lcol = 9.377 Å" kN
( )
right wall
cpeE := -0.5 wEk := cs Å" cd Å" qp Å" cpeE - cpi Å" 0.5lx + lcx Å" lcol = 1.705 Å" kN
( )
2.3.5.2. Wind action - wind from the right - mirror of previous scheme
2.3.5.3. Wind action - front wind.
cpi := 0.2
b := 29m h := 11.1m e := min(b , 2 Å" h) = 22.2 m
roof kN e
cpeF := -1.8 wFk := cs Å" cd Å" qp Å" cpeF - cpi Å" 0.5lx + lcx = 4.608 Å" = 5.55 m
( )
m 4
kN e
cpeG := -1.2 wGk := cs Å" cd Å" qp Å" cpeG - cpi Å" 0.5lx + lcx = 3.226 Å" = 11.1 m
( )
m 2
wall
cpeA := -1.2 wAk := cs Å" cd Å" qp Å" cpeA - cpi Å" 0.5lx + lcx Å" lcol = 11.935 Å" kN
( )
cpi := -0.3
b := 29m h := 11.1m e := min(b , 2 Å" h) = 22.2 m
roof kN e
cpeF := -1.8 wFk := cs Å" cd Å" qp Å" cpeF - cpi Å" 0.5lx + lcx = 3.456 Å" = 5.55 m
( )
m 4
kN e
cpeG := -1.2 wGk := cs Å" cd Å" qp Å" cpeG - cpi Å" 0.5lx + lcx = 2.074 Å" = 11.1 m
( )
m 2
wall
cpeA := -1.2 wAk := cs Å" cd Å" qp Å" cpeA - cpi Å" lx Å" lcol = 11.082 Å" kN
2.3.6. Thermal action.
"t1 := -15 Å" °C "t2 := 15 Å" °C
°C °C
2.4. Specification of actions on frame 4 (edge frame along x axis)
2.4.1. Permanent action.
Gdsup kN
gd.supcurt Å" 0.5ly + lcy gdsup.floor Å" 0.5ly + lcy
( ) ( )
kN
= 4 Å"
= 58.2 Å" kN = 30.739 Å"
lcol Å" 1.5 m
1.35 1.5 m
gdsup.roof Å" 0.5ly + lcy gdsup.gf Å" 0.5ly + lcy Å" 0.5lx + lcx
( ) ( ) ( )
kN kN
= 27.013 Å" = 99.581 m Å"
1.35 m 1.5 m
2.4.2. Imposed load on building and movable partitions
kN kN kN
gd.partition := 0.375 gd.partition Å" 0.5ly + lcy = 1.519 Å" qd = 6 Å"
( )
m
m2 m2
kN kN
Assumed self weight of partition < 2 kN/m - qk' := 0.8 Å" 0.5ly + lcy + qk' Å" 0.5ly + lcy = 19.44 Å"
( ) ( )ûÅ‚
îÅ‚qk Å‚Å‚
ðÅ‚
m
m2
2.4.3. Snow load.
2.4.4. Snow load-on face.
sd1 Å" 0.5ly + lcy sd2 Å" 0.5ly + lcy
( ) ( )
kN kN
= 1.944 Å" = 3.888 Å"
1.5 m 1.5 m
2.4.5. Wind action.
2.4.5.1. Wind action - wind from the left.
cpi := 0.2
b := 29m h := 11.1m e := min(b , 2 Å" h) = 22.2 m
roof
kN e
cpeF := -1.8 wFk := cs Å" cd Å" qp Å" cpeF - cpi Å" 0.5ly + lcy = 5.184 Å" a := = 2.22 m
( )
m 10
kN e e
cpeH := -0.7 wHk := cs Å" cd Å" qp Å" cpeH - cpi Å" 0.5ly + lcy = 2.333 Å" a := - = 8.88 m
( )
m 2 10
kN
cpeI := -0.2 wIk := cs Å" cd Å" qp Å" cpeI - cpi Å" 0.5ly + lcy = 1.037 Å"
( )
m
left wall
cpeD := 0.8 wDk := cs Å" cd Å" qp Å" cpeD - cpi Å" 0.5ly + lcy Å" lcol = 5.754 Å" kN
( )
right wall
cpeE := -0.5 wEk := cs Å" cd Å" qp Å" cpeE - cpi Å" 0.5ly + lcy Å" lcol = 6.713 Å" kN
( )
cpi := -0.3
b := 29m h := 11.1m e := min(b , 2 Å" h) = 22.2 m
roof
kN e
cpeF := -1.8 wFk := cs Å" cd Å" qp Å" cpeF - cpi Å" 0.5ly + lcy = 3.888 Å" a := = 2.22 m
( )
m 10
kN e e
cpeH := -0.7 wHk := cs Å" cd Å" qp Å" cpeH - cpi Å" 0.5ly + lcy = 1.037 Å" a := - = 8.88 m
( )
m 2 10
kN
cpeI := -0.2 wIk := cs Å" cd Å" qp Å" cpeI - cpi Å" 0.5ly + lcy = 0.259 Å"
( )
m
left wall
cpeD := 0.8 wDk := cs Å" cd Å" qp Å" cpeD - cpi Å" 0.5ly + lcy Å" lcol = 10.549 Å" kN
( )
right wall
cpeE := -0.5 wEk := cs Å" cd Å" qp Å" cpeE - cpi Å" 0.5ly + lcy Å" lcol = 1.918 Å" kN
( )
2.4.5.2. Wind action - wind from the right - mirror of previous scheme
2.4.5.3. Wind action - front wind.
cpi := 0.2
b := 26m h := 11.1m e := min(b , 2 Å" h) = 22.2 m
roof kN e
cpeF := -1.8 wFk := cs Å" cd Å" qp Å" cpeF - cpi Å" 0.5ly + lcy = 5.184 Å" = 5.55 m
( )
m 4
kN e
cpeG := -1.2 wGk := cs Å" cd Å" qp Å" cpeG - cpi Å" 0.5ly + lcy = 3.629 Å" = 11.1 m
( )
m 2
wall
cpeA := -1.2 wAk := cs Å" cd Å" qp Å" cpeA - cpi Å" 0.5ly + lcy Å" lcol = 13.427 Å" kN
( )
cpi := -0.3
b := 26m h := 11.1m e := min(b , 2 Å" h) = 22.2 m
roof kN e
cpeF := -1.8 wFk := cs Å" cd Å" qp Å" cpeF - cpi Å" 0.5ly + lcy = 3.888 Å" = 5.55 m
( )
m 4
kN e
cpeG := -1.2 wGk := cs Å" cd Å" qp Å" cpeG - cpi Å" 0.5ly + lcy = 2.333 Å" = 11.1 m
( )
m 2
wall
cpeA := -1.2 wAk := cs Å" cd Å" qp Å" cpeA - cpi Å" 0.5ly + lcy Å" lcol = 8.631 Å" kN
( )
2.4.6. Thermal action.
"t1 := -15 Å" °C "t2 := 15 Å" °C
°C °C
3. CALCULATION OF SLAB REINFORCEMENT.
Concrete C20/25
fcd := 13.3MPa fctm := 2.2MPa fctd := 1.47MPa fck := 20MPa
Steel BSt500
fyd := 420MPa fyk := 500MPa ¾efflim := 0.50
Diameter of main reinforcement:
Õ := 12mm
Concrete cover for
cmin := 10mm
enviroment X0
allowable deviation of
"h := 5mm
concrete cover:
sitrrups diameter:
Õs := 6mm
c := cmin + Õs = 0.016 m
3.1.1. INTERNAL STRIP OF THE SLAB-equivalent frame in direction X
COLUMN STRIP
Distance of center of gravity from tensile edge:
ly
b := = 2.9 m Õ := 12mm
2
hslab := 0.24m
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.027 Å" m
Effective depth
d := hslab - a1 d = 0.213 Å" m
According to results:
MSd := 170.46kN Å" m
MSd60 := MSd Å" 60% = 102.276 Å" kN Å" m
MSd60
scceff := scceff = 0.058 Õ = 0.012 m
fcd Å" b Å" d2
<
¾eff := 1 - 1 - 2 Å" scceff ¾eff = 0.06 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d As1req = 1.179 × 10- 3 m2
fyd
As1req
n := n = 10.423
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
accepted 12
n := 11 Õ
4
íÅ‚ Å‚Å‚
Ä„ Å" Õ2
As1.prov := n Å" As1.prov = 1.244 × 10- 3 m2
4
fctm
As1.prov > As1.min As1.min1 := 0.26 Å" Å" b Å" d = 7.066 × 10- 4 m2
fyk
As1.min2 := 0.0013 Å" b Å" d = 8.03 × 10- 4 m2
b
= 263.636 Å" mm
n
Assumed 11 fi 12 every 260mm
3.1.2. INTERNAL STRIP OF THE SLAB-equivalent frame in direction X
STRIP BETWEEN COLUMNS
Distance of center of gravity from tensile edge:
ly
Õ := 8mm
b := = 2.9 m hslab = 0.24 m
2
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.025 Å" m
Effective depth
d := hslab - a1 d = 0.215 Å" m
According to results:
MSd := 170.46kN Å" m
MSd40 := MSd Å" 40% = 68.184 Å" kN Å" m
MSd40
scceff := scceff = 0.038
fcd Å" b Å" d2
<
¾eff := 1 - 1 - 2 Å" scceff ¾eff = 0.039 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d As1req = 7.701 × 10- 4 m2
fyd
As1req
n := n = 15.321
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
accepted 8
n := 16 Õ
Ä„ Å" Õ2
As1.prov := n Å" As1.prov = 8.042 × 10- 4 m2
4
fctm
As1.prov > As1.min As1.min1 := 0.26 Å" Å" b Å" d = 7.133 × 10- 4 m2
fyk
As1.min2 := 0.0013 Å" b Å" d = 8.105 × 10- 4 m2
b
= 181.25 Å" mm
n
Assumed 16 fi 8 every 180mm
3.1.3. INTERNAL STRIP OF THE SLAB-equivalent frame in direction X
INTERNAL COLUMN STRIP
Distance of center of gravity from tensile edge:
ly
b := = 1.45 m hslab = 0.24 m
Õ := 20mm
4
a1 := cmin + "h + Õs + 0.5Õ
a1 = 0.031 Å" m
Effective depth
d := hslab - a1 = 0.209 m d = 0.209 Å" m
According to results:
MSd := 426.52kN Å" m
MSd50 := MSd Å" 50% = 213.26 Å" kN Å" m
MSd50
scceff := scceff = 0.253
fcd Å" b Å" d2
¾eff := 1 - 1 - 2 Å" scceff ¾ = 0.297 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d As1req = 2.854 × 10- 3 m2
fyd
As1req
n := n = 9.084
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
accepted 20
Õ:=
n 10 Õ
Ä„ Å" Õ2
As1.prov := n Å"
As1.prov = 3.142 × 10- 3 m2
4
fctm
As1.prov > As1.min As1.min1 := 0.26 Å" Å" b Å" d = 3.467 × 10- 4 m2
fyk
As1.min2 := 0.0013 Å" b Å" d = 3.94 × 10- 4 m2
b
= 145 Å" mm
n
Assumed 10 fi 20 every 145mm
3.1.4. INTERNAL STRIP OF THE SLAB-equivalent frame in direction X
EXTERNAL COLUMN STRIP
Distance of center of gravity from tensile edge:
ly
b := = 1.45 m hslab = 0.24 m Õ := 12mm
4
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.027 Å" m
Effective depth
d := hslab - a1 d = 0.213 Å" m
According to results:
MSd := 426.52kN Å" m
MSd25 := MSd Å" 25% = 106.63 Å" kN Å" m
MSd25
scceff := scceff = 0.122
fcd Å" b Å" d2
¾eff := 1 - 1 - 2 Å" scceff ¾ = 0.13 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d As1req = 1.275 × 10- 3 m2
fyd
As1req
n :=
n = 11.274
ëÅ‚ öÅ‚
accepted 12
Ä„ Å" Õ2 n := 12 Õ
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
Ä„ Å" Õ2
As1.prov := n Å" As1.prov = 1.357 × 10- 3 m2
4
fctm
As1.prov > As1.min As1.min1 := 0.26 Å" Å" b Å" d = 3.533 × 10- 4 m2
fyk
b
As1.min2 := 0.0013 Å" b Å" d = 4.015 × 10- 4 m2
= 120.833 Å" mm
n
Assumed 12 fi 12 every 120mm
3.1.5. INTERNAL STRIP OF THE SLAB-equivalent frame in direction X
STRIP BETWEEN COLUMNS
Distance of center of gravity from tensile edge:
ly
Õ := 12mm
b := = 2.9 m hslab = 0.24 m
2
a1 := cmin + "h + Õs + 0.5Õ
a1 = 0.027 Å" m
Effective depth
d := hslab - a1
d = 0.213 Å" m
According to results:
MSd := 426.52kN Å" m
MSd12.5 := MSd Å" 25% = 106.63 Å" kN Å" m
MSd12.5
scceff :=
scceff = 0.061
fcd Å" b Å" d2
<
¾eff := 1 - 1 - 2 Å" scceff ¾eff = 0.063 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d
As1req = 1.231 × 10- 3 m2
fyd
As1req
accepted 12
n := n = 10.881 n := 11 Õ
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
Ä„ Å" Õ2
As1.prov := n Å" As1.prov = 1.244 × 10- 3 m2
4
fctm
As1.prov > As1.min As1.min1 := 0.26 Å" Å" b Å" d = 7.066 × 10- 4 m2
fyk
b
As1.min2 := 0.0013 Å" b Å" d = 8.03 × 10- 4 m2
= 263.636 Å" mm
n
Assumed 11 fi 12 every 260mm
3.2.1. EXTERNAL STRIP OF THE SLAB-equivalent edge frame in direction X
COLUMN STRIP
Distance of center of gravity from tensile edge:
lcy = 1.15 m
ly
ly = 5.8 m
b := lcy + = 2.6 m
Õ := 12mm
4
hslab = 0.24 m
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.027 Å" m
Effective depth
d := hslab - a1 d = 0.213 Å" m
According to results:
MSd := 118.2kN Å" m
MSd80 := MSd Å" 80% = 94.56 Å" kN Å" m
MSd80
scceff := scceff = 0.06
fcd Å" b Å" d2
<
¾eff := 1 - 1 - 2 Å" scceff ¾eff = 0.062 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d As1req = 1.091 × 10- 3 m2
fyd
As1req
n := n = 9.646
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
accepted 12
n := 10 Õ
Ä„ Å" Õ2
As1.prov := n Å" As1.prov = 1.131 × 10- 3 m2
4
fctm
As1.prov > As1.min
As1.min1 := 0.26 Å" Å" b Å" d = 6.335 × 10- 4 m2
fyk
As1.min2 := 0.0013 Å" b Å" d = 7.199 × 10- 4 m2
b
= 260 Å" mm
n
Assumed 10 fi 12 every 260mm
3.2.2. EXTERNAL STRIP OF THE SLAB-equivalent edge frame in direction X
STRIP BETWEEN COLUMNS
Distance of center of gravity from tensile edge:
ly
b := = 1.45 m
Õ := 8mm
4
hslab = 0.24 m
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.025 Å" m
Effective depth
d := hslab - a1 d = 0.215 Å" m
According to results:
MSd := 118.2kN Å" m
MSd20 := MSd Å" 20% = 23.64 Å" kN Å" m
MSd20
scceff := scceff = 0.027
fcd Å" b Å" d2
<
¾eff := 1 - 1 - 2 Å" scceff ¾eff = 0.027 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d As1req = 2.654 × 10- 4 m2
fyd
As1req
n := n = 5.279
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
accepted
n := 6 Õ 8
4
íÅ‚ Å‚Å‚
Ä„ Å" Õ2
As1.prov := n Å"
As1.prov = 3.016 × 10- 4 m2
4
fctm
As1.prov > As1.min
As1.min1 := 0.26 Å" Å" b Å" d = 3.566 × 10- 4 m2
fyk
b
As1.min2 := 0.0013 Å" b Å" d = 4.053 × 10- 4 m2
= 241.667 Å" mm
n
Assumed 6 fi 8 every 240mm
3.2.3. EXTERNAL STRIP OF THE SLAB-equivalent edge frame in direction X
COLUMNS STRIP
Distance of center of gravity from tensile edge:
ly
b := lcy + = 2.6 m
4
Õ := 20mm
hslab = 0.24 m
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.031 Å" m
Effective depth
d := hslab - a1 d = 0.209 Å" m
According to results:
MSd := 299.84kN Å" m
MSd87.5 := MSd Å" 87.5% = 262.36 Å" kN Å" m
MSd87.5
scceff := scceff = 0.174
fcd Å" b Å" d2
<
¾eff := 1 - 1 - 2 Å" scceff ¾eff = 0.192 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d
fyd
As1req = 3.307 × 10- 3 m2
As1req
accepted 20
n := n = 10.525 n := 11 Õ
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
Ä„ Å" Õ2
As1.prov := n Å"
As1.prov = 3.456 × 10- 3 m2
4
fctm
As1.prov > As1.min
As1.min1 := 0.26 Å" Å" b Å" d = 6.216 × 10- 4 m2
fyk
b
= 236.364 Å" mm As1.min2 := 0.0013 Å" b Å" d = 7.064 × 10- 4 m2
n
Assumed 11 fi 20 every 235mm
3.2.4. EXTERNAL STRIP OF THE SLAB-equivalent edge frame in direction X
STRIP BETWEEN COLUMNS
Distance of center of gravity from tensile edge:
ly
b := = 1.45 m hslab = 0.24 m Õ := 8mm
4
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.025 Å" m
Effective depth
d := hslab - a1 d = 0.215 Å" m
:= Å"
According to results:
MSd := 299.84kN Å" m
MSd12.5 := MSd Å" 12.5% = 37.48 Å" kN Å" m
MSd12.5
scceff := scceff = 0.042
fcd Å" b Å" d2
<
¾eff := 1 - 1 - 2 Å" scceff ¾eff = 0.043 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d As1req = 4.242 × 10- 4 m2
fyd
As1req
n := n = 8.439
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
accepted
n := 9 Õ 8
Ä„ Å" Õ2
As1.prov := n Å"
As1.prov = 4.524 × 10- 4 m2
4
fctm
As1.prov > As1.min
As1.min1 := 0.26 Å" Å" b Å" d = 3.566 × 10- 4 m2
fyk
As1.min2 := 0.0013 Å" b Å" d = 4.053 × 10- 4 m2
b
= 161.111 Å" mm
n
Assumed 9 fi 8 every 160mm
3.3.1. INTERNAL STRIP OF THE SLAB-equivalent frame in direction Y
COLUMN STRIP
Distance of center of gravity from tensile edge:
lx
b := = 2.6 m Õ := 12mm
2
hslab = 0.24 m
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.027 Å" m
Effective
depth
d := hslab - a1 d = 0.213 Å" m
According to results:
MSd := 162.38kN Å" m
MSd60 := MSd Å" 60% = 97.428 Å" kN Å" m
MSd60
scceff := scceff = 0.062 Õ = 0.012 m
fcd Å" b Å" d2
<
¾eff := 1 - 1 - 2 Å" scceff ¾eff = 0.064 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d As1req = 1.125 × 10- 3 m2
fyd
As1req
n := n = 9.949
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
accepted 12
n := 10 Õ
4
íÅ‚ Å‚Å‚
Ä„ Å" Õ2
As1.prov := n Å" As1.prov = 1.131 × 10- 3 m2
4
fctm
As1.prov > As1.min As1.min1 := 0.26 Å" Å" b Å" d = 6.335 × 10- 4 m2
fyk
As1.min2 := 0.0013 Å" b Å" d = 7.199 × 10- 4 m2
b
= 260 Å" mm
n
Assumed 10 fi 12 every 260mm
3.3.2. INTERNAL STRIP OF THE SLAB-equivalent frame in direction Y
STRIP BETWEEN COLUMNS
Distance of center of gravity from tensile edge:
lx
Õ := 8mm
b := = 2.6 m hslab = 0.24 m
2
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.025 Å" m
Effective
depth
d := hslab - a1 d = 0.215 Å" m
According to results:
MSd := 162.38kN Å" m
MSd40 := MSd Å" 40% = 64.952 Å" kN Å" m
MSd40
scceff := scceff = 0.041
fcd Å" b Å" d2
<
¾eff := 1 - 1 - 2 Å" scceff ¾eff = 0.041 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d As1req = 7.345 × 10- 4 m2
fyd
As1req
n := n = 14.613
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
accepted 8
n := 15 Õ
Ä„ Å" Õ2
As1.prov := n Å" As1.prov = 7.54 × 10- 4 m2
4
fctm
As1.prov > As1.min As1.min1 := 0.26 Å" Å" b Å" d = 6.395 × 10- 4 m2
fyk
As1.min2 := 0.0013 Å" b Å" d = 7.267 × 10- 4 m2
b
= 173.333 Å" mm
n
Assumed 15 fi 8 every 170mm
3.3.3. INTERNAL STRIP OF THE SLAB-equivalent frame in direction Y
COLUMN STRIP
Distance of center of gravity from tensile edge:
lx
b := = 1.3 m hslab = 0.24 m
Õ := 20mm
4
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.031 Å" m
Effective
depth
d := hslab - a1 d = 0.209 Å" m
According to results:
MSd := 468.46kN Å" m
MSd50 := MSd Å" 50% = 234.23 Å" kN Å" m
MSd50
scceff := scceff = 0.31
fcd Å" b Å" d2
¾eff := 1 - 1 - 2 Å" scceff ¾ = 0.384 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d As1req = 3.302 × 10- 3 m2
fyd
As1req
n := n = 10.511
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
accepted 20
Õ:=
n 11 Õ
Ä„ Å" Õ2
As1.prov := n Å"
As1.prov = 3.456 × 10- 3 m2
4
fctm
As1.prov > As1.min As1.min1 := 0.26 Å" Å" b Å" d = 3.108 × 10- 4 m2
fyk
As1.min2 := 0.0013 Å" b Å" d = 3.532 × 10- 4 m2
b
= 118.182 Å" mm
n
Assumed 11 fi 20 every 115mm
3.3.4. INTERNAL STRIP OF THE SLAB-equivalent frame in direction Y
STRIP BETWEEN COLUMNS
Distance of center of gravity from tensile edge:
lx
b := = 1.3 m hslab = 0.24 m Õ := 12mm
4
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.027 Å" m
Effective
depth
d := hslab - a1 d = 0.213 Å" m
According to results:
MSd := 468.46kN Å" m
MSd25 := MSd Å" 25% = 117.115 Å" kN Å" m
MSd25
scceff := scceff = 0.149
fcd Å" b Å" d2
¾eff := 1 - 1 - 2 Å" scceff ¾ = 0.163 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d As1req = 1.425 × 10- 3 m2
fyd
As1req
n :=
accepted 12
n = 12.599 n := 13 Õ
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
Ä„ Å" Õ2
As1.prov := n Å"
As1.prov = 1.47 × 10- 3 m2
4
fctm
As1.prov > As1.min As1.min1 := 0.26 Å" Å" b Å" d = 3.168 × 10- 4 m2
fyk
b
= 100 Å" mm As1.min2 := 0.0013 Å" b Å" d = 3.6 × 10- 4 m2
n
Assumed 13 fi 12 every 100mm
3.3.5. INTERNAL STRIP OF THE SLAB-equivalent frame in direction Y
STRIP BETWEEN COLUMNS
Distance of center of gravity from tensile edge:
lx
b := = 2.6 m hslab = 0.24 m Õ := 12mm
2
a1 := cmin + "h + Õs + 0.5Õ
a1 = 0.027 Å" m
Effective depth
d := hslab - a1
d = 0.213 Å" m
According to results:
MSd := 468.46kN Å" m
MSd12.5 := MSd Å" 25% = 117.115 Å" kN Å" m
MSd12.5
scceff :=
scceff = 0.075
fcd Å" b Å" d2
<
¾eff := 1 - 1 - 2 Å" scceff ¾eff = 0.078 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d
As1req = 1.362 × 10- 3 m2
fyd
As1req
accepted 12
n := n = 12.043 n := 13 Õ
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
Ä„ Å" Õ2
As1.prov := n Å" As1.prov = 1.47 × 10- 3 m2
4
fctm
As1.prov > As1.min As1.min1 := 0.26 Å" Å" b Å" d = 6.335 × 10- 4 m2
fyk
b
As1.min2 := 0.0013 Å" b Å" d = 7.199 × 10- 4 m2
= 200 Å" mm
n
Assumed 13 fi 12 every 200mm
3.4.1. EXTERNAL STRIP OF THE SLAB-equivalent edge frame in direction Y
COLUMN STRIP
Distance of center of gravity from tensile edge:
lx
Õ := 12mm
b := lcx + = 2.3 m
4
hslab = 0.24 m
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.027 Å" m
Effective depth
d := hslab - a1 d = 0.213 Å" m
According to results:
MSd := 113.36kN Å" m
MSd80 := MSd Å" 80% = 90.688 Å" kN Å" m
MSd80
scceff := scceff = 0.065
fcd Å" b Å" d2
<
¾eff := 1 - 1 - 2 Å" scceff ¾eff = 0.068 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d As1req = 1.049 × 10- 3 m2
fyd
As1req
n := n = 9.277
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
accepted 12
n := 10 Õ
Ä„ Å" Õ2
As1.prov := n Å"
As1.prov = 1.131 × 10- 3 m2
4
fctm
As1.prov > As1.min
As1.min1 := 0.26 Å" Å" b Å" d = 5.604 × 10- 4 m2
fyk
As1.min2 := 0.0013 Å" b Å" d = 6.369 × 10- 4 m2
b
= 230 Å" mm
n
Assumed 10 fi 12 every 230mm
3.4.2. EXTERNAL STRIP OF THE SLAB-equivalent edge frame in direction Y
STRIP BETWEEN COLUMNS
Distance of center of gravity from tensile edge:
lx
b := = 1.3 m
Õ := 8mm
4
hslab = 0.24 m
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.025 Å" m
Effective depth
d := hslab - a1 d = 0.215 Å" m
According to results:
MSd := 113.36kN Å" m
MSd20 := MSd Å" 20% = 22.672 Å" kN Å" m
MSd20
scceff := scceff = 0.028
fcd Å" b Å" d2
<
¾eff := 1 - 1 - 2 Å" scceff ¾eff = 0.029 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d As1req = 2.547 × 10- 4 m2
fyd
As1req
n := n = 5.068
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
8
accepted
n := 6 Õ
Ä„ Å" Õ2
As1.prov := n Å"
As1.prov = 3.016 × 10- 4 m2
4
fctm
As1.prov > As1.min
As1.min1 := 0.26 Å" Å" b Å" d = 3.197 × 10- 4 m2
fyk
As1.min2 := 0.0013 Å" b Å" d = 3.633 × 10- 4 m2
b
= 216.667 Å" mm
n
Assumed 6 fi 8 every 215mm
3.4.3. EXTERNAL STRIP OF THE SLAB-equivalent edge frame in direction Y
COLUMNS STRIP
Distance of center of gravity from tensile edge:
lx = 5.2 m
lx
b := lcx + = 2.3 m
Õ := 20mm
4
hslab = 0.24 m
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.031 Å" m
Effective depth
d := hslab - a1 d = 0.209 Å" m
According to results:
MSd := 351.59kN Å" m
MSd87.5 := MSd Å" 87.5% = 307.641 Å" kN Å" m
MSd87.5
scceff := scceff = 0.23
fcd Å" b Å" d2
<
¾eff := 1 - 1 - 2 Å" scceff ¾eff = 0.265 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d
fyd
As1req = 4.041 × 10- 3 m2
As1req
accepted
n := n = 12.863 n := 13 Õ 20
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
Ä„ Å" Õ2
As1.prov := n Å"
As1.prov = 4.084 × 10- 3 m2
4
fctm
As1.prov > As1.min
As1.min1 := 0.26 Å" Å" b Å" d = 5.499 × 10- 4 m2
fyk
b
As1.min2 := 0.0013 Å" b Å" d = 6.249 × 10- 4 m2
= 176.923 Å" mm
n
Assumed 13 fi 20 every 175mm
3.4.4. EXTERNAL STRIP OF THE SLAB-equivalent edge frame in direction Y
STRIP BETWEEN COLUMNS
Distance of center of gravity from tensile edge:
lx
b := = 1.3 m hslab = 0.24 m Õ := 8mm
4
a1 := cmin + "h + Õs + 0.5Õ a1 = 0.025 Å" m
Effective depth
d := hslab - a1 d = 0.215 Å" m
According to results:
MSd := 351.59kN Å" m
MSd12.5 := MSd Å" 12.5% = 43.949 Å" kN Å" m
MSd12.5
scceff := scceff = 0.055
fcd Å" b Å" d2
<
¾eff := 1 - 1 - 2 Å" scceff ¾eff = 0.057 ¾eff.lim := 0.35
fcd
As1req := ¾eff Å" Å" b Å" d As1req = 5.009 × 10- 4 m2
fyd
As1req
accepted
n := n = 9.964 n := 10 Õ 8
ëÅ‚ öÅ‚
Ä„ Å" Õ2
ìÅ‚ ÷Å‚
4
íÅ‚ Å‚Å‚
Ä„ Å" Õ2
As1.prov := n Å"
As1.prov = 5.027 × 10- 4 m2
4
fctm
As1.prov > As1.min
As1.min1 := 0.26 Å" Å" b Å" d = 3.197 × 10- 4 m2
fyk
b
= 130 Å" mm
n
As1.min2 := 0.0013 Å" b Å" d = 3.633 × 10- 4 m2
Assumed 10 fi 8 every 130mm
4. The design procedure for punching shear.
4.1.1. Internal column
d := 0.209m bcol = 0.4 m u := 4 Å" (b + 4d) = 8.544 m V := 1917.49kN - 1228.432kN = 689.058
M := 133.26kN Å" m
c1
c1 := bcol = 0.4 m c2 := hcol = 0.4 m = 1 k := 0.6
c2
c12
w1 := + c1 Å" c2 + 4 Å" c2 Å" d + 16d2 + 2 Å" Ä„ Å" d Å" c1 = 1.799 m2
2
M u
² := 1 + k Å" Å" = 1.551
V w1
V
VEd := ² = 0.599 Å" MPa
u Å" d
0.18
CRdc := = 0.12
1.5
200mm
ëÅ‚2 öÅ‚
k := min , 1 + = 1.978
ìÅ‚ ÷Å‚
As1y := 3.456 Å" 10- 3m2
d
íÅ‚ Å‚Å‚
As1z := 3.142 Å" 10- 3m2
As1y As1z
Ály := = 0.0056 Álz := = 0.0051
(b + 6d) Å" hslab (b + 6d) Å" hslab
Ál := min 0.02 , Álz Å" Ály = 0.0054
( )
1228.43kN
1278.36kN
Ãcz := = 7.678 Å" MPa
Ãcy := = 7.99 Å" MPa
bcol2
bcol2
Ãcy + Ãcz
Ãcp := = 7.834 Å" MPa
Ãcp
2
Ãcp :=
MPa
fck 0.5
ëÅ‚ öÅ‚
vmin := 0.035 Å" k1.5 Å" = 0.436 vmin + 0.1 Å" Ãcp = 1.219
ìÅ‚ ÷Å‚ ( )
MPa
íÅ‚ Å‚Å‚
0.333
îÅ‚ Å‚Å‚
ïÅ‚CRdc ëÅ‚100 fck öÅ‚ + 0.1 Å" Ãcp , vmin + 0.1 Å" Ãcpśł
vRd.c := max Å" k Å" Å" Ál Å" Å" MPa = 1.307 Å" MPa
ìÅ‚ ÷Å‚
MPa
ðÅ‚ íÅ‚ Å‚Å‚ ûÅ‚
<
VEd = 0.599 Å" MPa vRd.c = 1.307 Å" MPa
Punching shear reinforcement is not necessary
4.1.1. Edge column
d := 0.209m bcol = 0.4 m u := 4 Å" (b + 4d) = 8.544 m V := 1328.41kN - 856.49kN = 471.92 Å"
M := 115.85kN Å" m
M u
² := 1 + k Å" Å" = 3.307
V w1
V
VEd := ² = 0.874 Å" MPa
u Å" d
0.18
CRdc := = 0.12
1.5
200mm
ëÅ‚2 öÅ‚
k := min , 1 + = 1.978
ìÅ‚ ÷Å‚
As1z := 3.456 Å" 10- 3m2
d
íÅ‚ Å‚Å‚
As1y := 4.084 Å" 10- 3m2
As1y As1z
Ály := = 0.0067 Álz := = 0.0056
(b + 6d) Å" hslab (b + 6d) Å" hslab
Ál := min 0.02 , Álz Å" Ály = 0.0061
( )
856.49kN
777.59kN
Ãcz := = 5.353 Å" MPa
Ãcy := = 4.86 Å" MPa
bcol2
bcol2
Ãcy + Ãcz
Ãcp := = 5.106 Å" MPa
Ãcp
2
Ãcp :=
MPa
fck 0.5
ëÅ‚ öÅ‚
vmin := 0.035 Å" k1.5 Å" = 0.436
ìÅ‚ ÷Å‚
vmin + 0.1 Å" Ãcp = 0.946
MPa
íÅ‚ Å‚Å‚
0.333
îÅ‚ Å‚Å‚
ïÅ‚CRdc ëÅ‚100 fck öÅ‚ + 0.1 Å" Ãcp, vmin + 0.1 Å" Ãcpśł
vRd.c := max Å" k Å" Å" Ál Å" Å" MPa = 1.058 Å" MPa
ìÅ‚ ÷Å‚
MPa
ðÅ‚ íÅ‚ Å‚Å‚ ûÅ‚
<
VEd = 0.874 Å" MPa vRd.c = 1.058 Å" MPa
Punching shear reinforcement is not necessary
5. Column sizing
5.1 Ground floor internal column
column height:
lcol := 3.7m
column cross-section dimensions:
b := 0.4m
h := 0.4m
internal forces:
MSd := 206.12 Å" kNm
NSd := 1994.36 Å" kN
concrete class C20/25 steel class A-III N
concrete properties: steel properties:
fcd := 13.3MPa fyd := 420MPa
fck := 20MPa
fyk := 500MPa
fcm := fck + 8MPa
fcm = 28 Å" MPa Es := 210GPa
Ecm := 30GPa ¾eff.lim := 0.5
buckling factor:
b Å" h3
Ic := = 2.133 × 10- 3 m4
12
EcmÅ"Ic
lcol
1
kA := = 1 ² := 1 + = 1.167 l0 := ² Å" lcol = 4.317 m
Ecm Å" Ic 5kA + 1
ëÅ‚ öÅ‚
ìÅ‚ ÷Å‚
lcol
íÅ‚ Å‚Å‚
Creep coefficient:
Õ := 2.5
Ac := b Å" h Ac = 0.16 m2
u := 2 Å" (b + h) u = 1.6 m
2 Å" Ac
h0 := h0 = 200 Å" mm
u
RH := 50%
2. STRENGTH CALCULATIONS - BUCKLING
2.1 Effective column height
l0 := ² Å" lcol l0 = 4.317 m
2.2 Assumption of cross-section dimensions
b = 0.4 m
h = 0.4 m
2.3 Assumption of reinforcement centroid location
concrete cover
cmin := 15mm "c := 5mm Õ := 20mm Õs := 8mm
c' := cmin + "c = 0.02 m
a1 := cmin + "c + Õs + 0.5 Å" Õ a1 = 0.038 m
a2 := a1 = 0.038 m
d := h - a1 d = 0.362 m
Limit realive depth of the compression zone:
¾efflim := 0.5
creep coefficient (28-day concrete
Õto := 2.458
and RH=50%)
2.4 Limit depth of the compression zone of concrete
xeff.lim := ¾eff.lim Å" d xeff.lim = 0.181 m
2.5 Column slenderness
l0
> 7,0 slender member
= 10.792
h
2.6 Eccentrics
2.6.a static eccentric
MSd
ee := ee = 0.103 m
NSd
2.6.b accidental eccentric
lcol 1 h
îÅ‚ Å‚Å‚
ea := max Å" + , , 0.01m ea = 0.013 m
ïÅ‚600 ëÅ‚1 5öÅ‚ śł
ìÅ‚ ÷Å‚
30
ðÅ‚ íÅ‚ Å‚Å‚ ûÅ‚
2.6.c initial eccentric
e0 := ee + ea e0 = 0.117 m
2.6.d total eccentric
assumption of reinforcement ratio:
Ácrt := 1.2%
NSdt
NSdt
influence of long term loading on the value of critical force:
kt := 1 + 0.5 Å" Å" Õto
NSd
kt
kt =
influence of bending moments and cracking on the value of critical force:
e0 l0 fcd
ëÅ‚ öÅ‚
² := max , 0.05 , 0.5 - 0.01 Å" - 0.01 Å" ² = 0.292
ìÅ‚ ÷Å‚
h h MPa
íÅ‚ Å‚Å‚
second moment of area for concrete section I.c about axis coming thorough centroid of
the concrete section:
b Å" h3
Ic := Ic = 2.133 × 10- 3 Å" m4
12
second moment of area for reinforcement I.s about axis coming through centroid of the
concrete section:
Is := Ácrt Å" b Å" d Å" 0.5 Å" h - a1 Is = 4.56 × 10- 5 m4
( )2
Å" Ic 0.11
9 îÅ‚Ecm Å‚Å‚
ëÅ‚ öÅ‚
conventional critical force:
Ncrt := Å" Å" + 0.1 + Es Å" Is
ïÅ‚ śł
ìÅ‚ ÷Å‚
kt
l02 2 Å" kt 0.1 + e0
ïÅ‚ śł
ìÅ‚ ÷Å‚
h
ðÅ‚ íÅ‚ Å‚Å‚ ûÅ‚
Ncrt
Ncrt = Å" kN
1
factor increasing eccentric:
· := · =
·
NSd
1 -
Ncrt
Ncrt
total eccentric
etot := · Å" e0 etot =
· etot
2.7 Internal forces for section sizing
MSdcorr := NSd Å" etot MSdcorr = Å" kNm
etot MSdcorr
3. STRENGTH CALCULATIONS - SECTION SIZING
3.1 Eccentric about reinforcement As1 and As2 centroids
e1 := etot + 0.5 Å" h - a1
etot
e1
e1 =
e2 := etot - 0.5 Å" h + a2
etot
e2
e2 =
3.2 Minimal reinforcement
ëÅ‚0.15 NSd öÅ‚
Asmin := max Å" , 0.002 Å" b Å" h Asmin = 7.123 × 10- 4 m2
ìÅ‚ ÷Å‚
fyd
íÅ‚ Å‚Å‚
3.3 Reinforcement area A.s2 - moment condition (situation C2 assumed)
NSd Å" e1 - fcd Å" b Å" xeff.lim Å" d - 0.5 Å" xeff.lim
e1
( )
As2 :=
fyd Å" d - a2
( )
As2
As2 =
3.4 Reinforcement area A.s2 acceptance
Ä„ Å" Õ2
a2prov :=
a2prov = 3.142 × 10- 4 m2
4
As2
As2
assumed
= n := 9
a2prov
As2prov := a2prov Å" n = 2.827 × 10- 3 m2
As2prov = 2.827 × 10- 3 m2 > As2 =
As2
bar clearance:
c1 := max(20mm , Õ) c1 = 20 Å" mm
20mm
a2 := 20mm + 6mm + = 0.036 m
2
3.5 Correction of compression zone depth x.eff
2 Å" Å" e1 - fyd Å" As2 Å" d - a2
e1
( )ûÅ‚ xeff =
îÅ‚NSd Å‚Å‚
ðÅ‚
xeff := d - d2 - xeff
fcd Å" b
2 Å" a2 = 0.072 m
2a2 < xeff < xeff.lim
xeff.lim = 0.181 m
3.6 Reinforcement area A.s1 acceptance
-NSd + fcd Å" b Å" xeff + fyd Å" As2
xeff
As1 := As1 =
As1
fyd
3.7 Reinforcement area A.s1 acceptance
Ä„ Å" Õ2
a1prov :=
a1prov = 3.142 × 10- 4 m2
4
As1
As1
assumed
= n := 2
a1prov
As1prov := a1prov Å" n = 6.283 × 10- 4 m2
As1prov = 6.283 × 10- 4 m2 > As1 =
As1
bar clearance:
c1 := max(20mm , Õ) c1 = 20 Å" mm
20mm
a1 := 20mm + 6mm + = 0.036 m
2
3.8 Total reinforcement ratio
As1
As1 + As2
Áprov :=
b Å" d
Áprov
Áprov = Å" %
4. CHECKING CORRECTNESS OF BUCKLING PREDICTIONS
4.1 Second moment of area for reinforcement l.s correction
Iscorr := As1 Å" 0.5 Å" h - a1 + As2 Å" 0.5 Å" h - a2 Iscorr =
As1 Iscorr
( )2 ( )2
4.2 Conventional buckling force correction
Å" Ic 0.11
9 îÅ‚Ecm Å‚Å‚
ëÅ‚ öÅ‚
Ncrit.corr := Å" Å" + 0.1 + Es Å" Iscorr Ncrit.corr = Å" kN
Ncrit.corr
ïÅ‚ śł
ìÅ‚ ÷Å‚
kt
l02 2 Å" kt 0.1 + e0
ïÅ‚ śł
ìÅ‚ ÷Å‚
h
ðÅ‚ íÅ‚ Å‚Å‚ ûÅ‚
factor increasing total eccentric 1
·corr := ·corr =
·corr
NSd
1 -
Ncrit.corr
Ncrit.corr
etot.corr := ·corr Å" e0 etot.corr =
·corr etot.corr
4.3 Internal forces for section sizing
NSd = 1.994 × 103 Å" kN
MSd := NSd Å" etot.corr MSd = Å" kNm
etot.corr MSd
4.4 Total eccentrics comparison
etot.corr
etot.corr
0.9 < < 1.03
=
etot
5. ULTIMATE CAPACITY OF THE SECTION
Column cross-section dimensions
b = 0.4 m
h = 0.4 m
Tension reinforcement
As1
As1 =
a1 = 0.036 m
Compression reinforcement
As2
As2 =
a2 = 0.036 m
Internal forces
NSd = 1.994 × 103 Å" kN
NSdt
NSdt = Å" kN
MSd := 265kNm
5.1 Effective depth of the section
d := h - a1 d = 0.364 m
5.2 Limit depth of the compression zone of concrete
xeff.lim := ¾eff.lim Å" d xeff.lim = 0.182 m
5.3 Total eccentric
etot := etot.corr etot =
etot.corr etot
5.4 Eccentrics about centroids of tension and compression reinforcement
e1 := etot + 0.5 Å" h - a1 e1 =
etot e1
e2 := etot - 0.5 Å" h + a2 e2 =
etot e2
5.5 Depth of the compression zone of concrete (for situation C2)
- Å" + Å"
NSd - fyd Å" As2 + fyd Å" As1
As2
xeff := xeff =
xeff
fcd Å" b
2a2 = 0.072 m
2a2 < xeff < xeff.lim
xeff.lim = 0.182 m
5.6 Ultimate capacity
NSd Å" e1 = Å" kNm
e1
MRd := fcd Å" b Å" xeff Å" d - 0.5 Å" xeff + fyd Å" As2 Å" d - a2 MRd = Å" kNm
xeff MRd
( ) ( )
<
NSd Å" e1 = Å" kNm MRd = Å" kNm
e1 MRd
5.2 Ground floor edge column
5.2 Ground floor edge column
column height:
lcol := 3.7m
column cross-section dimensions:
b := 0.4m
h := 0.4m
internal forces:
MSd := 188.54 Å" kNm
NSd := 1386.71 Å" kN
NSdt := 0.6 Å" NSd
2. STRENGTH CALCULATIONS - BUCKLING
2.1 Effective column height
l0 := ² Å" lcol l0 = 4.317 m
2.2 Assumption of cross-section dimensions
b = 0.4 m
h = 0.4 m
2.3 Assumption of reinforcement centroid location
concrete cover
cmin := 15mm "c := 5mm Õ := 20mm Õs := 8mm
c' := cmin + "c = 0.02 m
a1 := cmin + "c + Õs + 0.5 Å" Õ a1 = 0.038 m
a2 := a1 = 0.038 m
d := h - a1 d = 0.362 m
Limit realive depth of the compression zone:
¾efflim := 0.5
creep coefficient (28-day concrete
Õto := 2.458
and RH=50%)
2.4 Limit depth of the compression zone of concrete
xeff.lim := ¾eff.lim Å" d xeff.lim = 0.181 m
2.5 Column slenderness
l0
> 7,0 slender member
= 10.792
h
2.6 Eccentrics
2.6.a static eccentric
MSd
ee := ee = 0.136 m
NSd
2.6.b accidental eccentric
lcol 1 h
îÅ‚ Å‚Å‚
ea := max Å" + , , 0.01m ea = 0.013 m
ïÅ‚600 ëÅ‚1 5öÅ‚ śł
ìÅ‚ ÷Å‚
30
ðÅ‚ íÅ‚ Å‚Å‚ ûÅ‚
2.6.c initial eccentric
e0 := ee + ea e0 = 0.149 m
2.6.d total eccentric
assumption of reinforcement ratio:
Ácrt := 1%
NSdt
influence of long term loading on the value of critical force:
kt := 1 + 0.5 Å" Å" Õto
NSd
kt = 1.737
influence of bending moments and cracking on the value of critical force:
e0 l0 fcd
ëÅ‚ öÅ‚
² := max , 0.05 , 0.5 - 0.01 Å" - 0.01 Å" ² = 0.373
ìÅ‚ ÷Å‚
h h MPa
íÅ‚ Å‚Å‚
second moment of area for concrete section I.c about axis coming thorough centroid of
the concrete section:
b Å" h3
Ic := Ic = 2.133 × 10- 3 Å" m4
12
second moment of area for reinforcement I.s about axis coming through centroid of the
concrete section:
Is := Ácrt Å" b Å" d Å" 0.5 Å" h - a1 Is = 3.8 × 10- 5 m4
( )2
Å" Ic 0.11
9 îÅ‚Ecm Å‚Å‚
ëÅ‚ öÅ‚
conventional critical force:
Ncrt := Å" Å" + 0.1 + Es Å" Is
ïÅ‚ śł
ìÅ‚ ÷Å‚
l02 2 Å" kt 0.1 + e0
ïÅ‚ śł
ìÅ‚ ÷Å‚
h
ðÅ‚ íÅ‚ Å‚Å‚ ûÅ‚
Ncrt = 6.812 × 103 Å" kN
1
factor increasing eccentric:
· := · = 1.256
NSd
1 -
Ncrt
total eccentric
etot := · Å" e0 etot = 0.187 m
2.7 Internal forces for section sizing
MSdcorr := NSd Å" etot MSdcorr = 259.948 Å" kNm
3. STRENGTH CALCULATIONS - SECTION SIZING
3.1 Eccentric about reinforcement As1 and As2 centroids
e1 := etot + 0.5 Å" h - a1
e1 = 0.349 m
e2 := etot - 0.5 Å" h + a2
e2 = 0.025 m
3.2 Minimal reinforcement
ëÅ‚0.15 NSd öÅ‚
Asmin := max Å" , 0.002 Å" b Å" h Asmin = 4.953 × 10- 4 m2
ìÅ‚ ÷Å‚
fyd
íÅ‚ Å‚Å‚
3.3 Reinforcement area A.s2 - moment condition (situation C2 assumed)
NSd Å" e1 - fcd Å" b Å" xeff.lim Å" d - 0.5 Å" xeff.lim
( )
As2 :=
fyd Å" d - a2
( )
As2 = 1.64 × 10- 3 m2
3.4 Reinforcement area A.s2 acceptance
Ä„ Å" Õ2
a2prov :=
a2prov = 3.142 × 10- 4 m2
4
As2
I assumed
= 5.22 n := 6
a2prov
As2prov := a2prov Å" n = 1.885 × 10- 3 m2
>
As2prov = 1.885 × 10- 3 m2 As2 = 1.64 × 10- 3 m2
bar clearance:
c1 := max(20mm , Õ) c1 = 20 Å" mm
20mm
a2 := 20mm + 6mm + = 0.036 m
2
3.5 Correction of compression zone depth x.eff
2 Å" Å" e1 - fyd Å" As2 Å" d - a2
( )ûÅ‚ xeff = 0.18 m
îÅ‚NSd Å‚Å‚
ðÅ‚
xeff := d - d2 -
fcd Å" b
2 Å" a2 = 0.072 m
2a2 < xeff < xeff.lim
xeff.lim = 0.181 m
3.6 Reinforcement area A.s1 acceptance
-NSd + fcd Å" b Å" xeff + fyd Å" As2
As1 := As1 = 6.129 × 10- 4 m2
fyd
3.7 Reinforcement area A.s1 acceptance
Ä„ Å" Õ2
a1prov :=
a1prov = 3.142 × 10- 4 m2
4
As1
I assumed
= 1.951 n := 2
a1prov
As1prov := a1prov Å" n = 6.283 × 10- 4 m2
>
As1prov = 6.283 × 10- 4 m2 As1 = 6.129 × 10- 4 m2
bar clearance:
c1 := max(20mm , Õ) c1 = 20 Å" mm
20mm
a1 := 20mm + 6mm + = 0.036 m
2
3.8 Total reinforcement ratio
As1 + As2
Áprov :=
b Å" d
Áprov = 1.556 Å" %
4. CHECKING CORRECTNESS OF BUCKLING PREDICTIONS
4.1 Second moment of area for reinforcement l.s correction
Iscorr := As1 Å" 0.5 Å" h - a1 + As2 Å" 0.5 Å" h - a2 Iscorr = 6.059 × 10- 5 m4
( )2 ( )2
4.2 Conventional buckling force correction
Å" Ic 0.11
9 îÅ‚Ecm Å‚Å‚
ëÅ‚ öÅ‚
Ncrit.corr := Å" Å" + 0.1 + Es Å" Iscorr Ncrit.corr = 9.103 × 103 Å" kN
ïÅ‚ śł
ìÅ‚ ÷Å‚
l02 2 Å" kt 0.1 + e0
ïÅ‚ śł
ìÅ‚ ÷Å‚
h
ðÅ‚ íÅ‚ Å‚Å‚ ûÅ‚
factor increasing total eccentric 1
·corr := ·corr = 1.18
NSd
1 -
Ncrit.corr
etot.corr := ·corr Å" e0 etot.corr = 0.176 m
4.3 Internal forces for section sizing
4.3 Internal forces for section sizing
NSd = 1.387 × 103 Å" kN
MSd := NSd Å" etot.corr MSd = 244.235 Å" kNm
4.4 Total eccentrics comparison
etot.corr
0.9 < < 1.03
= 0.94
etot
5. ULTIMATE CAPACITY OF THE SECTION
Column cross-section dimensions
b = 0.4 m
h = 0.4 m
Tension reinforcement
As1 = 6.129 × 10- 4 m2
a1 = 0.036 m
Compression reinforcement
As2 = 1.64 × 10- 3 m2
a2 = 0.036 m
Internal
NSd = 1.387 × 103 Å" kN
forces
NSdt = 832.026 Å" kN
MSd := 265kNm
5.1 Effective depth of the section
d := h - a1 d = 0.364 m
5.2 Limit depth of the compression zone of concrete
xeff.lim := ¾eff.lim Å" d xeff.lim = 0.182 m
5.3 Total eccentric
etot := etot.corr etot = 0.176 m
5.4 Eccentrics about centroids of tension and compression reinforcement
e1 := etot + 0.5 Å" h - a1 e1 = 0.34 m
e2 := etot - 0.5 Å" h + a2 e2 = 0.012 m
5.5 Depth of the compression zone of concrete (for situation C2)
5.5 Depth of the compression zone of concrete (for situation C2)
NSd - fyd Å" As2 + fyd Å" As1
xeff := xeff = 0.18 m
fcd Å" b
2a2 = 0.072 m
2a2 < xeff < xeff.lim
xeff.lim = 0.182 m
5.6 Ultimate capacity
NSd Å" e1 = 471.655 Å" kNm
MRd := fcd Å" b Å" xeff Å" d - 0.5 Å" xeff + fyd Å" As2 Å" d - a2 MRd = 487.883 Å" kNm
( ) ( )
<
NSd Å" e1 = 471.65 Å" kNm MRd = 487.88 Å" kNm
DATA
Column hight
lcol := 3.7m
Column dimensions
b := 0.40m h := 0.4m
Internal
NEd := 1942.57kN
forces
M0Ed1 := 133.26kNm M0Ed2 := 120.81kNm
M0Edqp := 10.07kNm
Exposure class
X0
Concrete class C20 / 25 Steel class
AIIIN
µcu2 := 0.0035
fyk := 500MPa
fck := 20MPa
fyd := 420MPa
fcd := 13.3MPa
Es = 210 Å" GPa
fcm := fck + 8MPa = 28 Å" MPa
Ecm = 30 Å" GPa
Buckling factor:
b Å" h3
Ic := = 2.133 × 10- 3 m4
12
EcmÅ"Ic
lcol
1
kA := = 1 ² := 1 + = 1.167 l0 := ² Å" lcol = 4.317 m
Ecm Å" Ic 5kA + 1
ëÅ‚ öÅ‚
ìÅ‚ ÷Å‚
lcol
íÅ‚ Å‚Å‚
Creep coefficient:
Õ := 2.5
Ac := b Å" h = 0.16 m2
u := 2 Å" (b + h) = 1.6 m
2 Å" Ac
h0 := = 0.2 m
u
RH := 50%
age of concrete at loading (days)
t0 := 60
RH
100
ÕRH := 1 + 1 - = 1.145
3
0.1 Å" h0
16.8
²fcm := = 3.175
fcm
1
²t0 := = 0.422
0.1 + t00.2
Õ0 := ÕRH Å" ²fcm Å" ²t0 = 1.535
M0Edqp
Õeff := Õ0 Å" = 0.116
M0Ed1
2. Strength calculations - buckling
2.1 Effective column height
lo := ² Å" lcol = 4.317 m
2.2 Assumption of cross-section dimensions (declared in data set)
b = 0.4 m
h = 0.4 m
2.3 Assumption of reinforcement centroid location
concrete cover
cmin := 15mm "c := 5mm Õg := 20mm Õs := 8mm c1 := max 20mm , Õg = 20 Å" mm
( )
cmin := max Õg, 10mm , 10mm = 20 Å" mm
( )
"cdev := 5mm cnom := cmin + "cdev = 25 Å" mm
Õw1 := 6mm c := cnom + Õs = 33 Å" mm
a1 := cmin + "c + Õs + 0.5 Å" Õg a1 = 0.043 m
a2 := a1 = 0.043 m
d := h - a1 = 0.357 m
¾efflim := 0.5
Limit realive depth of the compression zone:
2.4 Limit depth of the compression zone of concrete
xeff.lim := ¾efflim Å" d = 0.179 m
2.5 a Column slenderness
Ic
b Å" h3
Ac := b Å" h = 0.16 m2 Ic := = 2.133 × 10- 3 m4 i := = 0.115 m
12 Ac
lo
 := = 37.383
i
2.5b Boundary slenderness
M0Ed2
1
A := = 0.977 rm := = 0.907
1 + 0.2 Å" Õeff M0Ed1
C := 1.7 - rm = 0.793
B := 1.1
NEd
n := = 0.913
fcd Å" Ac
20 Å" A Å" B Å" C
lim := = 17.855
n
> slender column
 = 37.383 lim = 17.855
2.6.a Initial eccentric
M0Ed1
eo := = 0.069 m
NEd
2.6.b Accidental eccentric
lo
= 0.011 m
400
h
= 0.013 m
30
lo
ëÅ‚ h öÅ‚
ei := max , , 0.02m = 0.02 m
ìÅ‚ ÷Å‚
400 30
íÅ‚ Å‚Å‚
2.7 II order influences
Áb := 0.015 reinforcement ratio asumption
fck
k1 := = 1
20MPa

k2 := n Å" = 0.201 k2 := 0.2
170
k1 Å" k2
Kc := = 0.179
1 + Õeff
Ks := 1
Second moment of area Is
Is := Áb Å" b Å" d Å" 0.5 Å" h - a1 = 5.28 × 10- 5 m4
( )2
Nominal sifness
EI := Kc Å" Ecd Å" Ic + Ks Å" Es Å" Is = 20.645 Å" MN Å" m2
2.7 b Buckling force NB
Ä„2 Å" EI
NB := = 10935.21 Å" kN
lo2
2.7 c Factor increasing eccentric ·
Co := 8
Ä„2
² := = 1.003 Å" 1.23
Co
² := 1.23
²
· := 1 + = 1.266
NB
- 1
NEd
2.7 d total eccentric
etot := · Å" eo + ei = 0.112 m
( )
2.8 internal forces for section sizing
MEd := NEd Å" etot = 217.842 Å" kNm
NEd = 1.943 × 103 Å" kN
3. Strength calculations section sizing
3.1 Eccentic about reinforcement A.si i A.s2
e1 := etot + 0.5 Å" h - a1 = 0.269 m
e2 := etot - 0.5 Å" h + a2 = -0.045 m
3.2 Minimal total reinforcement
ëÅ‚0.1 NEd öÅ‚
Asmin := max Å" , 0.002 Å" b Å" h = 4.625 × 10- 4 m2
ìÅ‚ ÷Å‚
fyd
íÅ‚ Å‚Å‚
3.3 Reinforcement area
Assumed symmetrical reinforcement
As1 := As2
NEd
> small eccentricity
xeff := = 0.365 m xeff.lim = 0.179 m
fcd Å" b
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 3.088 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = -7.807 × 10- 5 Ãs1 := min µs1 Å" Es , fyd = -16.395 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 8.903 × 10- 4 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 2.115 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
II iteration:
AsN < AsM
> small eccentricity
xeff := 0.325 Å" m xeff.lim = 0.179 m
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 3.037 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = 3.446 × 10- 4 Ãs1 := min µs1 Å" Es , fyd = 72.369 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 1.609 × 10- 3 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 1.566 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
As1 := AsN = 1.609 × 10- 3 m2 As2 := As1 = 1.609 × 10- 3 m2
Number of bars
Õg := 20mm
4As1
n1 := = 5.122
Ä„ Õg2
n1 := 6
Õg
a1 := cnom + Õw1 + = 0.041 m
2
d := h - a1 = 0.359 m
Ä„ Å" Õg2
As1 := n1 Å" = 1.885 × 10- 3 m2 As2 := As1
4
3.7 Total reinforcement ratio
As1 + As2
Áprov := = 0.026 Ácrit := 0.015
>
b Å" d
4. Checking correctness of buckling prediction
4.1 Second moment of area for reinforcement correction
l's
I's := As1 Å" 0.5 Å" h - a1 + As2 Å" 0.5 Å" h - a2 = 9.412 × 10- 5 m4
( )2 ( )2
EI' := Kc Å" Ecd Å" Ic + Ks Å" Es Å" I's = 2.932 × 107 m3 Å" kg Å" s- 2
Ä„2 Å" EI'
N'B := = 1.553 × 107 m Å" kg Å" s- 2
lo2
²
·' := 1 + = 1.176
N'B
- 1
NEd
e'tot := ·' Å" eo + ei = 0.104 m
( )
4.3 Internal forces for section sizing (after correction of buckling influence)
NEd = 1.943 × 103 Å" kN
MEd := NEd Å" e'tot = 202.375 m Å" kN
4.4 Total eccentrices (for assumed and provided reinforcement) comparision
e'tot
= 0.929 - eccentric ratio including, that assumption was on safe side
etot
6. Ultimate capacity of section
Column cross section:
b = 0.4 m h = 0.4 m
Tensioned reinforcement:
As1 = 1.885 × 10- 3 m2 a1 = 0.041 m
a2 = 0.043 m
Compression reinforcement:
As2 = 1.885 × 10- 3 m2
internal forces:
NEd = 1.943 × 103 Å" kN
M0Ed1 = 133.26 m Å" kN
6.1 Effective depth of the section:
d := h - a1 = 0.359 m
6.2 Limit depth of the compression zone of concrete
xeff.lim := ¾eff.lim Å" d = 0.18 m
6.3 total eccentric
etot := e'tot = 0.104 m
6.4 Eccentrics about centroids of tensioned As1 and compression As2 reinforcement
e1 := etot + 0.5 Å" h - a1 = 0.263 m
e2 := etot - 0.5 Å" h + a1 = -0.055 m
6.5 Depth of the compression zone of the concrete
NEd - fyd Å" As2 - As1
( )
xeff := = 0.456 m
 Å" · Å" fcd Å" b
<
xeff.lim = 0.18 m xeff = 0.456 m
1
( - ¾efflim Å" NEd - fyd Å" As2 + 1 + ¾efflim Å" fyd Å" As1
) ( ) ( )
xeff := d = 0.312 m
 Å" Å" fcd Å" b Å" d Å" 1 - ¾efflim + 2 Å" fyd Å" As1
( )
îÅ‚· Å‚Å‚
ðÅ‚ ûÅ‚
< <
xeff.lim = 0.18 m xeff = 0.312 m d = 0.359 m
6.6 Ultimate capacity
<
NEd Å" e1 = 511.244 Å" kN Å" m MRd := fcd Å" b Å" xeff Å" d - 0.5xeff + fyd Å" As2 Å" d - a2 = 587.038 Å" kN Å" m
( ) ( )
condition satisfied
DATA
Column hight
lcol := 3.7m
Column dimensions
b := 0.40m h := 0.4m
Internal
NEd := 1942.57kN
forces
M0Ed1 := 120.81kNm M0Ed2 := 133.26kNm
M0Edqp := 5.93kNm
Exposure class
X0
Concrete class C20 / 25 Steel class
AIIIN
µcu2 := 0.0035
fyk := 500MPa
fck := 20MPa
fyd := 420MPa
fcd := 13.3MPa
Es = 210 Å" GPa
fcm := fck + 8MPa = 28 Å" MPa
Ecm = 30 Å" GPa
Buckling factor:
b Å" h3
Ic := = 2.133 × 10- 3 m4
12
EcmÅ"Ic
lcol
1
kA := = 1 ² := 1 + = 1.167 l0 := ² Å" lcol = 4.317 m
Ecm Å" Ic 5kA + 1
ëÅ‚ öÅ‚
ìÅ‚ ÷Å‚
lcol
íÅ‚ Å‚Å‚
Creep coefficient:
Õ := 2.5
Ac := b Å" h = 0.16 m2
u := 2 Å" (b + h) = 1.6 m
2 Å" Ac
h0 := = 0.2 m
u
RH := 50%
age of concrete at loading (days)
t0 := 60
RH
100
ÕRH := 1 + 1 - = 1.145
3
0.1 Å" h0
16.8
²fcm := = 3.175
fcm
1
²t0 := = 0.422
0.1 + t00.2
Õ0 := ÕRH Å" ²fcm Å" ²t0 = 1.535
M0Edqp
Õeff := Õ0 Å" = 0.075
M0Ed1
2. Strength calculations - buckling
2.1 Effective column height
lo := ² Å" lcol = 4.317 m
2.2 Assumption of cross-section dimensions (declared in data set)
b = 0.4 m
h = 0.4 m
2.3 Assumption of reinforcement centroid location
concrete cover
cmin := 15mm "c := 5mm Õg := 20mm Õs := 8mm c1 := max 20mm , Õg = 20 Å" mm
( )
cmin := max Õg, 10mm , 10mm = 20 Å" mm
( )
"cdev := 5mm cnom := cmin + "cdev = 25 Å" mm
Õw1 := 6mm c := cnom + Õs = 33 Å" mm
a1 := cmin + "c + Õs + 0.5 Å" Õg a1 = 0.043 m
a2 := a1 = 0.043 m
d := h - a1 = 0.357 m
¾efflim := 0.5
Limit realive depth of the compression zone:
2.4 Limit depth of the compression zone of concrete
xeff.lim := ¾efflim Å" d = 0.179 m
2.5 a Column slenderness
Ic
b Å" h3
Ac := b Å" h = 0.16 m2 Ic := = 2.133 × 10- 3 m4 i := = 0.115 m
12 Ac
lo
 := = 37.383
i
2.5b Boundary slenderness
M0Ed1
1
A := = 0.985 rm := = 0.907
1 + 0.2 Å" Õeff M0Ed2
C := 1.7 - rm = 0.793
B := 1.1
NEd
n := = 0.913
fcd Å" Ac
20 Å" A Å" B Å" C
lim := = 17.998
n
> slender column
 = 37.383 lim = 17.998
2.6.a Initial eccentric
M0Ed1
eo := = 0.062 m
NEd
2.6.b Accidental eccentric
lo
= 0.011 m
400
h
= 0.013 m
30
lo
ëÅ‚ h öÅ‚
ei := max , , 0.02m = 0.02 m
ìÅ‚ ÷Å‚
400 30
íÅ‚ Å‚Å‚
2.7 II order influences
Áb := 0.015 reinforcement ratio asumption
fck
k1 := = 1
20MPa

k2 := n Å" = 0.201 k2 := 0.2
170
k1 Å" k2
Kc := = 0.186
1 + Õeff
Ks := 1
Second moment of area Is
Is := Áb Å" b Å" d Å" 0.5 Å" h - a1 = 5.28 × 10- 5 m4
( )2
Nominal sifness
EI := Kc Å" Ecd Å" Ic + Ks Å" Es Å" Is = 21.007 Å" MN Å" m2
2.7 b Buckling force NB
Ä„2 Å" EI
NB := = 11126.6 Å" kN
lo2
2.7 c Factor increasing eccentric ·
Co := 8
Ä„2
² := = 1.003 Å" 1.23
Co
² := 1.23
²
· := 1 + = 1.26
NB
- 1
NEd
2.7 d total eccentric
etot := · Å" eo + ei = 0.104 m
( )
2.8 internal forces for section sizing
MEd := NEd Å" etot = 201.2 Å" kNm
NEd = 1.943 × 103 Å" kN
3. Strength calculations section sizing
3.1 Eccentic about reinforcement A.si i A.s2
e1 := etot + 0.5 Å" h - a1 = 0.261 m
e2 := etot - 0.5 Å" h + a2 = -0.053 m
3.2 Minimal total reinforcement
ëÅ‚0.1 NEd öÅ‚
Asmin := max Å" , 0.002 Å" b Å" h = 4.625 × 10- 4 m2
ìÅ‚ ÷Å‚
fyd
íÅ‚ Å‚Å‚
3.3 Reinforcement area
Assumed symmetrical reinforcement
As1 := As2
NEd
> small eccentricity
xeff := = 0.365 m xeff.lim = 0.179 m
fcd Å" b
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 3.088 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = -7.807 × 10- 5 Ãs1 := min µs1 Å" Es , fyd = -16.395 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 8.903 × 10- 4 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 1.852 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
II iteration:
AsN < AsM
> small eccentricity
xeff := 0.333 Å" m xeff.lim = 0.179 m
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 3.048 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = 2.523 × 10- 4 Ãs1 := min µs1 Å" Es , fyd = 52.973 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 1.431 × 10- 3 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 1.435 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
As1 := AsM = 1.435 × 10- 3 m2 As2 := As1 = 1.435 × 10- 3 m2
Number of bars
Õg := 20mm
4As1
n1 := = 4.566
Ä„ Õg2
n1 := 5
Õg
a1 := cnom + Õw1 + = 0.041 m
2
d := h - a1 = 0.359 m
Ä„ Å" Õg2
As1 := n1 Å" = 1.571 × 10- 3 m2 As2 := As1
4
3.7 Total reinforcement ratio
As1 + As2
Áprov := = 0.022 Ácrit := 0.015
>
b Å" d
4. Checking correctness of buckling prediction
4.1 Second moment of area for reinforcement correction
l's
I's := As1 Å" 0.5 Å" h - a1 + As2 Å" 0.5 Å" h - a2 = 7.843 × 10- 5 m4
( )2 ( )2
EI' := Kc Å" Ecd Å" Ic + Ks Å" Es Å" I's = 2.639 × 107 m3 Å" kg Å" s- 2
Ä„2 Å" EI'
N'B := = 1.398 × 107 m Å" kg Å" s- 2
lo2
²
·' := 1 + = 1.199
N'B
- 1
NEd
e'tot := ·' Å" eo + ei = 0.099 m
( )
4.3 Internal forces for section sizing (after correction of buckling influence)
NEd = 1.943 × 103 Å" kN
MEd := NEd Å" e'tot = 191.36 m Å" kN
4.4 Total eccentrices (for assumed and provided reinforcement) comparision
e'tot
= 0.951 - eccentric ratio including, that assumption was on safe side
etot
6. Ultimate capacity of section
Column cross section:
b = 0.4 m h = 0.4 m
Tensioned reinforcement:
As1 = 1.571 × 10- 3 m2 a1 = 0.041 m
a2 = 0.043 m
Compression reinforcement:
As2 = 1.571 × 10- 3 m2
internal forces:
NEd = 1.943 × 103 Å" kN
M0Ed1 = 120.81 m Å" kN
6.1 Effective depth of the section:
d := h - a1 = 0.359 m
6.2 Limit depth of the compression zone of concrete
xeff.lim := ¾eff.lim Å" d = 0.18 m
6.3 total eccentric
etot := e'tot = 0.099 m
6.4 Eccentrics about centroids of tensioned As1 and compression As2 reinforcement
e1 := etot + 0.5 Å" h - a1 = 0.258 m
e2 := etot - 0.5 Å" h + a1 = -0.06 m
6.5 Depth of the compression zone of the concrete
NEd - fyd Å" As2 - As1
( )
xeff := = 0.456 m
 Å" · Å" fcd Å" b
<
xeff.lim = 0.18 m xeff = 0.456 m
1
( - ¾efflim Å" NEd - fyd Å" As2 + 1 + ¾efflim Å" fyd Å" As1
) ( ) ( )
xeff := d = 0.322 m
 Å" Å" fcd Å" b Å" d Å" 1 - ¾efflim + 2 Å" fyd Å" As1
( )
îÅ‚· Å‚Å‚
ðÅ‚ ûÅ‚
< <
xeff.lim = 0.18 m xeff = 0.322 m d = 0.359 m
6.6 Ultimate capacity
<
NEd Å" e1 = 500.228 Å" kN Å" m MRd := fcd Å" b Å" xeff Å" d - 0.5xeff + fyd Å" As2 Å" d - a2 = 547.62 Å" kN Å" m
( ) ( )
condition satisfied
DATA
Column hight
lcol := 3.7m
Column dimensions
b := 0.40m h := 0.4m
Internal
NEd := 1942.57kN
forces
M0Ed1 := 140.15kNm M0Ed2 := 130.45kNm
M0Edqp := 11.45kNm
Exposure class
X0
Concrete class C20 / 25 Steel class
AIIIN
µcu2 := 0.0035
fyk := 500MPa
fck := 20MPa
fyd := 420MPa
fcd := 13.3MPa
Es = 210 Å" GPa
fcm := fck + 8MPa = 28 Å" MPa
Ecm = 30 Å" GPa
Buckling factor:
b Å" h3
Ic := = 2.133 × 10- 3 m4
12
EcmÅ"Ic
lcol
1
kA := = 1 ² := 1 + = 1.167 l0 := ² Å" lcol = 4.317 m
Ecm Å" Ic 5kA + 1
ëÅ‚ öÅ‚
ìÅ‚ ÷Å‚
lcol
íÅ‚ Å‚Å‚
Creep coefficient:
Õ := 2.5
Ac := b Å" h = 0.16 m2
u := 2 Å" (b + h) = 1.6 m
2 Å" Ac
h0 := = 0.2 m
u
RH := 50%
age of concrete at loading (days)
t0 := 60
RH
100
ÕRH := 1 + 1 - = 1.145
3
0.1 Å" h0
16.8
²fcm := = 3.175
fcm
1
²t0 := = 0.422
0.1 + t00.2
Õ0 := ÕRH Å" ²fcm Å" ²t0 = 1.535
M0Edqp
Õeff := Õ0 Å" = 0.125
M0Ed1
2. Strength calculations - buckling
2.1 Effective column height
lo := ² Å" lcol = 4.317 m
2.2 Assumption of cross-section dimensions (declared in data set)
b = 0.4 m
h = 0.4 m
2.3 Assumption of reinforcement centroid location
concrete cover
cmin := 15mm "c := 5mm Õg := 20mm Õs := 8mm c1 := max 20mm , Õg = 20 Å" mm
( )
cmin := max Õg, 10mm , 10mm = 20 Å" mm
( )
"cdev := 5mm cnom := cmin + "cdev = 25 Å" mm
Õw1 := 6mm c := cnom + Õs = 33 Å" mm
a1 := cmin + "c + Õs + 0.5 Å" Õg a1 = 0.043 m
a2 := a1 = 0.043 m
d := h - a1 = 0.357 m
¾efflim := 0.5
Limit realive depth of the compression zone:
2.4 Limit depth of the compression zone of concrete
xeff.lim := ¾efflim Å" d = 0.179 m
2.5 a Column slenderness
Ic
b Å" h3
Ac := b Å" h = 0.16 m2 Ic := = 2.133 × 10- 3 m4 i := = 0.115 m
12 Ac
lo
 := = 37.383
i
2.5b Boundary slenderness
M0Ed2
1
A := = 0.976 rm := = 0.931
1 + 0.2 Å" Õeff M0Ed1
C := 1.7 - rm = 0.769
B := 1.1
NEd
n := = 0.913
fcd Å" Ac
20 Å" A Å" B Å" C
lim := = 17.279
n
> slender column
 = 37.383 lim = 17.279
2.6.a Initial eccentric
M0Ed1
eo := = 0.072 m
NEd
2.6.b Accidental eccentric
lo
= 0.011 m
400
h
= 0.013 m
30
lo
ëÅ‚ h öÅ‚
ei := max , , 0.02m = 0.02 m
ìÅ‚ ÷Å‚
400 30
íÅ‚ Å‚Å‚
2.7 II order influences
Áb := 0.015 reinforcement ratio asumption
fck
k1 := = 1
20MPa

k2 := n Å" = 0.201 k2 := 0.2
170
k1 Å" k2
Kc := = 0.178
1 + Õeff
Ks := 1
Second moment of area Is
Is := Áb Å" b Å" d Å" 0.5 Å" h - a1 = 5.28 × 10- 5 m4
( )2
Nominal sifness
EI := Kc Å" Ecd Å" Ic + Ks Å" Es Å" Is = 20.566 Å" MN Å" m2
2.7 b Buckling force NB
Ä„2 Å" EI
NB := = 10892.87 Å" kN
lo2
2.7 c Factor increasing eccentric ·
Co := 8
Ä„2
² := = 1.003 Å" 1.23
Co
² := 1.23
²
· := 1 + = 1.267
NB
- 1
NEd
2.7 d total eccentric
etot := · Å" eo + ei = 0.117 m
( )
2.8 internal forces for section sizing
MEd := NEd Å" etot = 226.787 Å" kNm
NEd = 1.943 × 103 Å" kN
3. Strength calculations section sizing
3.1 Eccentic about reinforcement A.si i A.s2
e1 := etot + 0.5 Å" h - a1 = 0.274 m
e2 := etot - 0.5 Å" h + a2 = -0.04 m
3.2 Minimal total reinforcement
ëÅ‚0.1 NEd öÅ‚
Asmin := max Å" , 0.002 Å" b Å" h = 4.625 × 10- 4 m2
ìÅ‚ ÷Å‚
fyd
íÅ‚ Å‚Å‚
3.3 Reinforcement area
Assumed symmetrical reinforcement
As1 := As2
NEd
> small eccentricity
xeff := = 0.365 m xeff.lim = 0.179 m
fcd Å" b
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 3.088 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = -7.807 × 10- 5 Ãs1 := min µs1 Å" Es , fyd = -16.395 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 8.903 × 10- 4 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 2.256 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
II iteration:
AsN < AsM
> small eccentricity
xeff := 0.324 Å" m xeff.lim = 0.179 m
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 3.035 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = 3.565 × 10- 4 Ãs1 := min µs1 Å" Es , fyd = 74.861 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 1.633 × 10- 3 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 1.67 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
As1 := AsM = 1.67 × 10- 3 m2 As2 := As1 = 1.67 × 10- 3 m2
Number of bars
Õg := 20mm
4As1
n1 := = 5.314
Ä„ Õg2
n1 := 6
Õg
a1 := cnom + Õw1 + = 0.041 m
2
d := h - a1 = 0.359 m
Ä„ Å" Õg2
As1 := n1 Å" = 1.885 × 10- 3 m2 As2 := As1
4
3.7 Total reinforcement ratio
As1 + As2
Áprov := = 0.026 Ácrit := 0.015
>
b Å" d
4. Checking correctness of buckling prediction
4.1 Second moment of area for reinforcement correction
l's
I's := As1 Å" 0.5 Å" h - a1 + As2 Å" 0.5 Å" h - a2 = 9.412 × 10- 5 m4
( )2 ( )2
EI' := Kc Å" Ecd Å" Ic + Ks Å" Es Å" I's = 2.924 × 107 m3 Å" kg Å" s- 2
Ä„2 Å" EI'
N'B := = 1.549 × 107 m Å" kg Å" s- 2
lo2
²
·' := 1 + = 1.176
N'B
- 1
NEd
e'tot := ·' Å" eo + ei = 0.108 m
( )
4.3 Internal forces for section sizing (after correction of buckling influence)
NEd = 1.943 × 103 Å" kN
MEd := NEd Å" e'tot = 210.575 m Å" kN
4.4 Total eccentrices (for assumed and provided reinforcement) comparision
e'tot
= 0.929 - eccentric ratio including, that assumption was on safe side
etot
6. Ultimate capacity of section
Column cross section:
b = 0.4 m h = 0.4 m
Tensioned reinforcement:
As1 = 1.885 × 10- 3 m2 a1 = 0.041 m
a2 = 0.043 m
Compression reinforcement:
As2 = 1.885 × 10- 3 m2
internal forces:
NEd = 1.943 × 103 Å" kN
M0Ed1 = 140.15 m Å" kN
6.1 Effective depth of the section:
d := h - a1 = 0.359 m
6.2 Limit depth of the compression zone of concrete
xeff.lim := ¾eff.lim Å" d = 0.18 m
6.3 total eccentric
etot := e'tot = 0.108 m
6.4 Eccentrics about centroids of tensioned As1 and compression As2 reinforcement
e1 := etot + 0.5 Å" h - a1 = 0.267 m
e2 := etot - 0.5 Å" h + a1 = -0.051 m
6.5 Depth of the compression zone of the concrete
NEd - fyd Å" As2 - As1
( )
xeff := = 0.456 m
 Å" · Å" fcd Å" b
<
xeff.lim = 0.18 m xeff = 0.456 m
1
( - ¾efflim Å" NEd - fyd Å" As2 + 1 + ¾efflim Å" fyd Å" As1
) ( ) ( )
xeff := d = 0.312 m
 Å" Å" fcd Å" b Å" d Å" 1 - ¾efflim + 2 Å" fyd Å" As1
( )
îÅ‚· Å‚Å‚
ðÅ‚ ûÅ‚
< <
xeff.lim = 0.18 m xeff = 0.312 m d = 0.359 m
6.6 Ultimate capacity
<
NEd Å" e1 = 519.444 Å" kN Å" m MRd := fcd Å" b Å" xeff Å" d - 0.5xeff + fyd Å" As2 Å" d - a2 = 587.038 Å" kN Å" m
( ) ( )
condition satisfied
DATA
Column hight
lcol := 3.7m
Column dimensions
b := 0.40m h := 0.4m
Internal
NEd := 1942.57kN
forces
M0Ed1 := 130.45kNm M0Ed2 := 140.15kNm
M0Edqp := 6.58kNm
Exposure class
X0
Concrete class C20 / 25 Steel class
AIIIN
µcu2 := 0.0035
fyk := 500MPa
fck := 20MPa
fyd := 420MPa
fcd := 13.3MPa
Es = 210 Å" GPa
fcm := fck + 8MPa = 28 Å" MPa
Ecm = 30 Å" GPa
Buckling factor:
b Å" h3
Ic := = 2.133 × 10- 3 m4
12
EcmÅ"Ic
lcol
1
kA := = 1 ² := 1 + = 1.167 l0 := ² Å" lcol = 4.317 m
Ecm Å" Ic 5kA + 1
ëÅ‚ öÅ‚
ìÅ‚ ÷Å‚
lcol
íÅ‚ Å‚Å‚
Creep coefficient:
Õ := 2.5
Ac := b Å" h = 0.16 m2
u := 2 Å" (b + h) = 1.6 m
2 Å" Ac
h0 := = 0.2 m
u
RH := 50%
age of concrete at loading (days)
t0 := 60
RH
100
ÕRH := 1 + 1 - = 1.145
3
0.1 Å" h0
16.8
²fcm := = 3.175
fcm
1
²t0 := = 0.422
0.1 + t00.2
Õ0 := ÕRH Å" ²fcm Å" ²t0 = 1.535
M0Edqp
Õeff := Õ0 Å" = 0.077
M0Ed1
2. Strength calculations - buckling
2.1 Effective column height
lo := ² Å" lcol = 4.317 m
2.2 Assumption of cross-section dimensions (declared in data set)
b = 0.4 m
h = 0.4 m
2.3 Assumption of reinforcement centroid location
concrete cover
cmin := 15mm "c := 5mm Õg := 20mm Õs := 8mm c1 := max 20mm , Õg = 20 Å" mm
( )
cmin := max Õg, 10mm , 10mm = 20 Å" mm
( )
"cdev := 5mm cnom := cmin + "cdev = 25 Å" mm
Õw1 := 6mm c := cnom + Õs = 33 Å" mm
a1 := cmin + "c + Õs + 0.5 Å" Õg a1 = 0.043 m
a2 := a1 = 0.043 m
d := h - a1 = 0.357 m
¾efflim := 0.5
Limit realive depth of the compression zone:
2.4 Limit depth of the compression zone of concrete
xeff.lim := ¾efflim Å" d = 0.179 m
2.5 a Column slenderness
Ic
b Å" h3
Ac := b Å" h = 0.16 m2 Ic := = 2.133 × 10- 3 m4 i := = 0.115 m
12 Ac
lo
 := = 37.383
i
2.5b Boundary slenderness
M0Ed1
1
A := = 0.985 rm := = 0.931
1 + 0.2 Å" Õeff M0Ed2
C := 1.7 - rm = 0.769
B := 1.1
NEd
n := = 0.913
fcd Å" Ac
20 Å" A Å" B Å" C
lim := = 17.442
n
> slender column
 = 37.383 lim = 17.442
2.6.a Initial eccentric
M0Ed1
eo := = 0.067 m
NEd
2.6.b Accidental eccentric
lo
= 0.011 m
400
h
= 0.013 m
30
lo
ëÅ‚ h öÅ‚
ei := max , , 0.02m = 0.02 m
ìÅ‚ ÷Å‚
400 30
íÅ‚ Å‚Å‚
2.7 II order influences
Áb := 0.015 reinforcement ratio asumption
fck
k1 := = 1
20MPa

k2 := n Å" = 0.201 k2 := 0.2
170
k1 Å" k2
Kc := = 0.186
1 + Õeff
Ks := 1
Second moment of area Is
Is := Áb Å" b Å" d Å" 0.5 Å" h - a1 = 5.28 × 10- 5 m4
( )2
Nominal sifness
EI := Kc Å" Ecd Å" Ic + Ks Å" Es Å" Is = 20.988 Å" MN Å" m2
2.7 b Buckling force NB
Ä„2 Å" EI
NB := = 11116.46 Å" kN
lo2
2.7 c Factor increasing eccentric ·
Co := 8
Ä„2
² := = 1.003 Å" 1.23
Co
² := 1.23
²
· := 1 + = 1.26
NB
- 1
NEd
2.7 d total eccentric
etot := · Å" eo + ei = 0.11 m
( )
2.8 internal forces for section sizing
MEd := NEd Å" etot = 213.396 Å" kNm
NEd = 1.943 × 103 Å" kN
3. Strength calculations section sizing
3.1 Eccentic about reinforcement A.si i A.s2
e1 := etot + 0.5 Å" h - a1 = 0.267 m
e2 := etot - 0.5 Å" h + a2 = -0.047 m
3.2 Minimal total reinforcement
ëÅ‚0.1 NEd öÅ‚
Asmin := max Å" , 0.002 Å" b Å" h = 4.625 × 10- 4 m2
ìÅ‚ ÷Å‚
fyd
íÅ‚ Å‚Å‚
3.3 Reinforcement area
Assumed symmetrical reinforcement
As1 := As2
NEd
> small eccentricity
xeff := = 0.365 m xeff.lim = 0.179 m
fcd Å" b
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 3.088 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = -7.807 × 10- 5 Ãs1 := min µs1 Å" Es , fyd = -16.395 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 8.903 × 10- 4 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 2.045 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
II iteration:
AsN < AsM
> small eccentricity
xeff := 0.328 Å" m xeff.lim = 0.179 m
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 3.041 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = 3.095 × 10- 4 Ãs1 := min µs1 Å" Es , fyd = 64.985 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 1.54 × 10- 3 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 1.541 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
As1 := AsM = 1.541 × 10- 3 m2 As2 := As1 = 1.541 × 10- 3 m2
Number of bars
Õg := 20mm
4As1
n1 := = 4.906
Ä„ Õg2
n1 := 5
Õg
a1 := cnom + Õw1 + = 0.041 m
2
d := h - a1 = 0.359 m
Ä„ Å" Õg2
As1 := n1 Å" = 1.571 × 10- 3 m2 As2 := As1
4
3.7 Total reinforcement ratio
As1 + As2
Áprov := = 0.022 Ácrit := 0.015
>
b Å" d
4. Checking correctness of buckling prediction
4.1 Second moment of area for reinforcement correction
l's
I's := As1 Å" 0.5 Å" h - a1 + As2 Å" 0.5 Å" h - a2 = 7.843 × 10- 5 m4
( )2 ( )2
EI' := Kc Å" Ecd Å" Ic + Ks Å" Es Å" I's = 2.637 × 107 m3 Å" kg Å" s- 2
Ä„2 Å" EI'
N'B := = 1.397 × 107 m Å" kg Å" s- 2
lo2
²
·' := 1 + = 1.199
N'B
- 1
NEd
e'tot := ·' Å" eo + ei = 0.104 m
( )
4.3 Internal forces for section sizing (after correction of buckling influence)
NEd = 1.943 × 103 Å" kN
MEd := NEd Å" e'tot = 202.942 m Å" kN
4.4 Total eccentrices (for assumed and provided reinforcement) comparision
e'tot
= 0.951 - eccentric ratio including, that assumption was on safe side
etot
6. Ultimate capacity of section
Column cross section:
b = 0.4 m h = 0.4 m
Tensioned reinforcement:
As1 = 1.571 × 10- 3 m2 a1 = 0.041 m
a2 = 0.043 m
Compression reinforcement:
As2 = 1.571 × 10- 3 m2
internal forces:
NEd = 1.943 × 103 Å" kN
M0Ed1 = 130.45 m Å" kN
6.1 Effective depth of the section:
d := h - a1 = 0.359 m
6.2 Limit depth of the compression zone of concrete
xeff.lim := ¾eff.lim Å" d = 0.18 m
6.3 total eccentric
etot := e'tot = 0.104 m
6.4 Eccentrics about centroids of tensioned As1 and compression As2 reinforcement
e1 := etot + 0.5 Å" h - a1 = 0.263 m
e2 := etot - 0.5 Å" h + a1 = -0.055 m
6.5 Depth of the compression zone of the concrete
NEd - fyd Å" As2 - As1
( )
xeff := = 0.456 m
 Å" · Å" fcd Å" b
<
xeff.lim = 0.18 m xeff = 0.456 m
1
( - ¾efflim Å" NEd - fyd Å" As2 + 1 + ¾efflim Å" fyd Å" As1
) ( ) ( )
xeff := d = 0.322 m
 Å" Å" fcd Å" b Å" d Å" 1 - ¾efflim + 2 Å" fyd Å" As1
( )
îÅ‚· Å‚Å‚
ðÅ‚ ûÅ‚
< <
xeff.lim = 0.18 m xeff = 0.322 m d = 0.359 m
6.6 Ultimate capacity
<
NEd Å" e1 = 511.81 Å" kN Å" m MRd := fcd Å" b Å" xeff Å" d - 0.5xeff + fyd Å" As2 Å" d - a2 = 547.62 Å" kN Å" m
( ) ( )
condition satisfied
DATA
Column hight
lcol := 3.7m
Column dimensions
b := 0.40m h := 0.4m
Internal
NEd := 1386.71kN
forces
M0Ed1 := 178.95kNm M0Ed2 := 152.23kNm
M0Edqp := 10.49kNm
Exposure class
X0
Concrete class C20 / 25 Steel class
AIIIN
µcu2 := 0.0035
fyk := 500MPa
fck := 20MPa
fyd := 420MPa
fcd := 13.3MPa
Es = 210 Å" GPa
fcm := fck + 8MPa = 28 Å" MPa
Ecm = 30 Å" GPa
Buckling factor:
b Å" h3
Ic := = 2.133 × 10- 3 m4
12
EcmÅ"Ic
lcol
1
kA := = 1 ² := 1 + = 1.167 l0 := ² Å" lcol = 4.317 m
Ecm Å" Ic 5kA + 1
ëÅ‚ öÅ‚
ìÅ‚ ÷Å‚
lcol
íÅ‚ Å‚Å‚
Creep coefficient:
Õ := 2.5
Ac := b Å" h = 0.16 m2
u := 2 Å" (b + h) = 1.6 m
2 Å" Ac
h0 := = 0.2 m
u
RH := 50%
age of concrete at loading (days)
t0 := 60
RH
100
ÕRH := 1 + 1 - = 1.145
3
0.1 Å" h0
16.8
²fcm := = 3.175
fcm
1
²t0 := = 0.422
0.1 + t00.2
Õ0 := ÕRH Å" ²fcm Å" ²t0 = 1.535
M0Edqp
Õeff := Õ0 Å" = 0.09
M0Ed1
2. Strength calculations - buckling
2.1 Effective column height
lo := ² Å" lcol = 4.317 m
2.2 Assumption of cross-section dimensions (declared in data set)
b = 0.4 m
h = 0.4 m
2.3 Assumption of reinforcement centroid location
concrete cover
cmin := 15mm "c := 5mm Õg := 20mm Õs := 8mm c1 := max 20mm , Õg = 20 Å" mm
( )
cmin := max Õg, 10mm , 10mm = 20 Å" mm
( )
"cdev := 5mm cnom := cmin + "cdev = 25 Å" mm
Õw1 := 6mm c := cnom + Õs = 33 Å" mm
a1 := cmin + "c + Õs + 0.5 Å" Õg a1 = 0.043 m
a2 := a1 = 0.043 m
d := h - a1 = 0.357 m
¾efflim := 0.5
Limit realive depth of the compression zone:
2.4 Limit depth of the compression zone of concrete
xeff.lim := ¾efflim Å" d = 0.179 m
2.5 a Column slenderness
Ic
b Å" h3
Ac := b Å" h = 0.16 m2 Ic := = 2.133 × 10- 3 m4 i := = 0.115 m
12 Ac
lo
 := = 37.383
i
2.5b Boundary slenderness
M0Ed2
1
A := = 0.982 rm := = 0.851
1 + 0.2 Å" Õeff M0Ed1
C := 1.7 - rm = 0.849
B := 1.1
NEd
n := = 0.652
fcd Å" Ac
20 Å" A Å" B Å" C
lim := = 22.737
n
> slender column
 = 37.383 lim = 22.737
2.6.a Initial eccentric
M0Ed1
eo := = 0.129 m
NEd
2.6.b Accidental eccentric
lo
= 0.011 m
400
h
= 0.013 m
30
lo
ëÅ‚ h öÅ‚
ei := max , , 0.02m = 0.02 m
ìÅ‚ ÷Å‚
400 30
íÅ‚ Å‚Å‚
2.7 II order influences
Áb := 0.015 reinforcement ratio asumption
fck
k1 := = 1
20MPa

k2 := n Å" = 0.143 k2 := 0.2
170
k1 Å" k2
Kc := = 0.183
1 + Õeff
Ks := 1
Second moment of area Is
Is := Áb Å" b Å" d Å" 0.5 Å" h - a1 = 5.28 × 10- 5 m4
( )2
Nominal sifness
EI := Kc Å" Ecd Å" Ic + Ks Å" Es Å" Is = 20.874 Å" MN Å" m2
2.7 b Buckling force NB
Ä„2 Å" EI
NB := = 11056.05 Å" kN
lo2
2.7 c Factor increasing eccentric ·
Co := 8
Ä„2
² := = 1.003 Å" 1.23
Co
² := 1.23
²
· := 1 + = 1.176
NB
- 1
NEd
2.7 d total eccentric
etot := · Å" eo + ei = 0.175 m
( )
2.8 internal forces for section sizing
NEd = 1.387 × 103 Å" kN MEd := NEd Å" etot = 243.143 Å" kNm
3. Strength calculations section sizing
3.1 Eccentic about reinforcement A.si i A.s2
e1 := etot + 0.5 Å" h - a1 = 0.332 m
e2 := etot - 0.5 Å" h + a2 = 0.018 m
3.2 Minimal total reinforcement
ëÅ‚0.1 NEd öÅ‚
Asmin := max Å" , 0.002 Å" b Å" h = 3.302 × 10- 4 m2
ìÅ‚ ÷Å‚
fyd
íÅ‚ Å‚Å‚
3.3 Reinforcement area
Assumed symmetrical reinforcement
As1 := As2
NEd
> small eccentricity
xeff := = 0.261 m xeff.lim = 0.179 m
fcd Å" b
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 2.923 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = 1.294 × 10- 3 Ãs1 := min µs1 Å" Es , fyd = 271.657 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 1.87 × 10- 3 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 1.261 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
II iteration:
AsN > AsM
> small eccentricity
xeff := 0.27 Å" m xeff.lim = 0.179 m
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 2.943 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = 1.128 × 10- 3 Ãs1 := min µs1 Å" Es , fyd = 236.833 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 1.297 × 10- 3 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 1.333 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
As1 := AsM = 1.333 × 10- 3 m2 As2 := As1 = 1.333 × 10- 3 m2
Number of bars
Õg := 20mm
4As1
n1 := = 4.242
Ä„ Õg2
n1 := 5
Õg
a1 := cnom + Õw1 + = 0.041 m
2
d := h - a1 = 0.359 m
Ä„ Å" Õg2
As1 := n1 Å" = 1.571 × 10- 3 m2 As2 := As1
4
3.7 Total reinforcement ratio
As1 + As2
Áprov := = 0.022 Ácrit := 0.015
>
b Å" d
4. Checking correctness of buckling prediction
4.1 Second moment of area for reinforcement correction
l's
I's := As1 Å" 0.5 Å" h - a1 + As2 Å" 0.5 Å" h - a2 = 7.843 × 10- 5 m4
( )2 ( )2
EI' := Kc Å" Ecd Å" Ic + Ks Å" Es Å" I's = 2.626 × 107 m3 Å" kg Å" s- 2
Ä„2 Å" EI'
N'B := = 1.391 × 107 m Å" kg Å" s- 2
lo2
²
·' := 1 + = 1.136
N'B
- 1
NEd
e'tot := ·' Å" eo + ei = 0.169 m
( )
4.3 Internal forces for section sizing (after correction of buckling influence)
NEd = 1.387 × 103 Å" kN
MEd := NEd Å" e'tot = 234.841 m Å" kN
4.4 Total eccentrices (for assumed and provided reinforcement) comparision
e'tot
= 0.966 - eccentric ratio including, that assumption was on safe side
etot
6. Ultimate capacity of section
Column cross section:
b = 0.4 m h = 0.4 m
Tensioned reinforcement:
As1 = 1.571 × 10- 3 m2 a1 = 0.041 m
a2 = 0.043 m
Compression reinforcement:
As2 = 1.571 × 10- 3 m2
internal forces:
NEd = 1.387 × 103 Å" kN
M0Ed1 = 178.95 m Å" kN
6.1 Effective depth of the section:
d := h - a1 = 0.359 m
6.2 Limit depth of the compression zone of concrete
xeff.lim := ¾eff.lim Å" d = 0.18 m
6.3 total eccentric
etot := e'tot = 0.169 m
6.4 Eccentrics about centroids of tensioned As1 and compression As2 reinforcement
e1 := etot + 0.5 Å" h - a1 = 0.328 m
e2 := etot - 0.5 Å" h + a1 = 0.01 m
6.5 Depth of the compression zone of the concrete
NEd - fyd Å" As2 - As1
( )
xeff := = 0.326 m
 Å" · Å" fcd Å" b
<
xeff.lim = 0.18 m xeff = 0.326 m
1
( - ¾efflim Å" NEd - fyd Å" As2 + 1 + ¾efflim Å" fyd Å" As1
) ( ) ( )
xeff := d = 0.267 m
 Å" Å" fcd Å" b Å" d Å" 1 - ¾efflim + 2 Å" fyd Å" As1
( )
îÅ‚· Å‚Å‚
ðÅ‚ ûÅ‚
< <
xeff.lim = 0.18 m xeff = 0.267 m d = 0.359 m
6.6 Ultimate capacity
<
NEd Å" e1 = 455.328 Å" kN Å" m MRd := fcd Å" b Å" xeff Å" d - 0.5xeff + fyd Å" As2 Å" d - a2 = 528.771 Å" kN Å" m
( ) ( )
condition satisfied
DATA
Column hight
lcol := 3.7m
Column dimensions
b := 0.40m h := 0.4m
Internal
NEd := 1386.71kN
forces
M0Ed1 := 152.23kNm M0Ed2 := 178.95kNm
M0Edqp := 5.14kNm
Exposure class
X0
Concrete class C20 / 25 Steel class
AIIIN
µcu2 := 0.0035
fyk := 500MPa
fck := 20MPa
fyd := 420MPa
fcd := 13.3MPa
Es = 210 Å" GPa
fcm := fck + 8MPa = 28 Å" MPa
Ecm = 30 Å" GPa
Buckling factor:
b Å" h3
Ic := = 2.133 × 10- 3 m4
12
EcmÅ"Ic
lcol
1
kA := = 1 ² := 1 + = 1.167 l0 := ² Å" lcol = 4.317 m
Ecm Å" Ic 5kA + 1
ëÅ‚ öÅ‚
ìÅ‚ ÷Å‚
lcol
íÅ‚ Å‚Å‚
Creep coefficient:
Õ := 2.5
Ac := b Å" h = 0.16 m2
u := 2 Å" (b + h) = 1.6 m
2 Å" Ac
h0 := = 0.2 m
u
RH := 50%
age of concrete at loading (days)
t0 := 60
RH
100
ÕRH := 1 + 1 - = 1.145
3
0.1 Å" h0
16.8
²fcm := = 3.175
fcm
1
²t0 := = 0.422
0.1 + t00.2
Õ0 := ÕRH Å" ²fcm Å" ²t0 = 1.535
M0Edqp
Õeff := Õ0 Å" = 0.052
M0Ed1
2. Strength calculations - buckling
2.1 Effective column height
lo := ² Å" lcol = 4.317 m
2.2 Assumption of cross-section dimensions (declared in data set)
b = 0.4 m
h = 0.4 m
2.3 Assumption of reinforcement centroid location
concrete cover
cmin := 15mm "c := 5mm Õg := 20mm Õs := 8mm c1 := max 20mm , Õg = 20 Å" mm
( )
cmin := max Õg, 10mm , 10mm = 20 Å" mm
( )
"cdev := 5mm cnom := cmin + "cdev = 25 Å" mm
Õw1 := 6mm c := cnom + Õs = 33 Å" mm
a1 := cmin + "c + Õs + 0.5 Å" Õg a1 = 0.043 m
a2 := a1 = 0.043 m
d := h - a1 = 0.357 m
¾efflim := 0.5
Limit realive depth of the compression zone:
2.4 Limit depth of the compression zone of concrete
xeff.lim := ¾efflim Å" d = 0.179 m
2.5 a Column slenderness
Ic
b Å" h3
Ac := b Å" h = 0.16 m2 Ic := = 2.133 × 10- 3 m4 i := = 0.115 m
12 Ac
lo
 := = 37.383
i
2.5b Boundary slenderness
M0Ed1
1
A := = 0.99 rm := = 0.851
1 + 0.2 Å" Õeff M0Ed2
C := 1.7 - rm = 0.849
B := 1.1
NEd
n := = 0.652
fcd Å" Ac
20 Å" A Å" B Å" C
lim := = 22.909
n
> slender column
 = 37.383 lim = 22.909
2.6.a Initial eccentric
M0Ed1
eo := = 0.11 m
NEd
2.6.b Accidental eccentric
lo
= 0.011 m
400
h
= 0.013 m
30
lo
ëÅ‚ h öÅ‚
ei := max , , 0.02m = 0.02 m
ìÅ‚ ÷Å‚
400 30
íÅ‚ Å‚Å‚
2.7 II order influences
Áb := 0.015 reinforcement ratio asumption
fck
k1 := = 1
20MPa

k2 := n Å" = 0.143 k2 := 0.2
170
k1 Å" k2
Kc := = 0.19
1 + Õeff
Ks := 1
Second moment of area Is
Is := Áb Å" b Å" d Å" 0.5 Å" h - a1 = 5.28 × 10- 5 m4
( )2
Nominal sifness
EI := Kc Å" Ecd Å" Ic + Ks Å" Es Å" Is = 21.229 Å" MN Å" m2
2.7 b Buckling force NB
Ä„2 Å" EI
NB := = 11244.09 Å" kN
lo2
2.7 c Factor increasing eccentric ·
Co := 8
Ä„2
² := = 1.003 Å" 1.23
Co
² := 1.23
²
· := 1 + = 1.173
NB
- 1
NEd
2.7 d total eccentric
etot := · Å" eo + ei = 0.152 m
( )
2.8 internal forces for section sizing
MEd := NEd Å" etot = 211.104 Å" kNm
NEd = 1.387 × 103 Å" kN
3. Strength calculations section sizing
3.1 Eccentic about reinforcement A.si i A.s2
e1 := etot + 0.5 Å" h - a1 = 0.309 m
e2 := etot - 0.5 Å" h + a2 = -0.005 m
3.2 Minimal total reinforcement
ëÅ‚0.1 NEd öÅ‚
Asmin := max Å" , 0.002 Å" b Å" h = 3.302 × 10- 4 m2
ìÅ‚ ÷Å‚
fyd
íÅ‚ Å‚Å‚
3.3 Reinforcement area
Assumed symmetrical reinforcement
As1 := As2
NEd
> small eccentricity
xeff := = 0.261 m xeff.lim = 0.179 m
fcd Å" b
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 2.923 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = 1.294 × 10- 3 Ãs1 := min µs1 Å" Es , fyd = 271.657 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 1.87 × 10- 3 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 9.66 × 10- 4 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
II iteration:
AsN < AsM
> small eccentricity
xeff := 0.275 Å" m xeff.lim = 0.179 m
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 2.953 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = 1.044 × 10- 3 Ãs1 := min µs1 Å" Es , fyd = 219.164 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 1.077 × 10- 3 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 1.054 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
As1 := AsN = 1.077 × 10- 3 m2 As2 := As1 = 1.077 × 10- 3 m2
Number of bars
Õg := 20mm
4As1
n1 := = 3.428
Ä„ Õg2
n1 := 4
Õg
a1 := cnom + Õw1 + = 0.041 m
2
d := h - a1 = 0.359 m
Ä„ Å" Õg2
As1 := n1 Å" = 1.257 × 10- 3 m2 As2 := As1
4
3.7 Total reinforcement ratio
As1 + As2
Áprov := = 0.018 Ácrit := 0.015
>
b Å" d
4. Checking correctness of buckling prediction
4.1 Second moment of area for reinforcement correction
l's
I's := As1 Å" 0.5 Å" h - a1 + As2 Å" 0.5 Å" h - a2 = 6.274 × 10- 5 m4
( )2 ( )2
EI' := Kc Å" Ecd Å" Ic + Ks Å" Es Å" I's = 2.332 × 107 m3 Å" kg Å" s- 2
Ä„2 Å" EI'
N'B := = 1.235 × 107 m Å" kg Å" s- 2
lo2
²
·' := 1 + = 1.156
N'B
- 1
NEd
e'tot := ·' Å" eo + ei = 0.15 m
( )
4.3 Internal forces for section sizing (after correction of buckling influence)
NEd = 1.387 × 103 Å" kN
MEd := NEd Å" e'tot = 207.962 m Å" kN
4.4 Total eccentrices (for assumed and provided reinforcement) comparision
e'tot
= 0.985 - eccentric ratio including, that assumption was on safe side
etot
6. Ultimate capacity of section
Column cross section:
b = 0.4 m h = 0.4 m
Tensioned reinforcement:
As1 = 1.257 × 10- 3 m2 a1 = 0.041 m
a2 = 0.043 m
Compression reinforcement:
As2 = 1.257 × 10- 3 m2
internal forces:
NEd = 1.387 × 103 Å" kN
M0Ed1 = 152.23 m Å" kN
6.1 Effective depth of the section:
d := h - a1 = 0.359 m
6.2 Limit depth of the compression zone of concrete
xeff.lim := ¾eff.lim Å" d = 0.18 m
6.3 total eccentric
etot := e'tot = 0.15 m
6.4 Eccentrics about centroids of tensioned As1 and compression As2 reinforcement
e1 := etot + 0.5 Å" h - a1 = 0.309 m
e2 := etot - 0.5 Å" h + a1 = -9.032 × 10- 3 m
6.5 Depth of the compression zone of the concrete
NEd - fyd Å" As2 - As1
( )
xeff := = 0.326 m
 Å" · Å" fcd Å" b
<
xeff.lim = 0.18 m xeff = 0.326 m
1
( - ¾efflim Å" NEd - fyd Å" As2 + 1 + ¾efflim Å" fyd Å" As1
) ( ) ( )
xeff := d = 0.273 m
 Å" Å" fcd Å" b Å" d Å" 1 - ¾efflim + 2 Å" fyd Å" As1
( )
îÅ‚· Å‚Å‚
ðÅ‚ ûÅ‚
< <
xeff.lim = 0.18 m xeff = 0.273 m d = 0.359 m
6.6 Ultimate capacity
<
NEd Å" e1 = 428.449 Å" kN Å" m MRd := fcd Å" b Å" xeff Å" d - 0.5xeff + fyd Å" As2 Å" d - a2 = 489.73 Å" kN Å" m
( ) ( )
condition satisfied
DATA
Column hight
lcol := 3.7m
Column dimensions
b := 0.40m h := 0.4m
Internal
NEd := 1386.71kN
forces
M0Ed1 := 188.54kNm M0Ed2 := 163.04kNm
M0Edqp := 13.98kNm
Exposure class
X0
Concrete class C20 / 25 Steel class
AIIIN
µcu2 := 0.0035
fyk := 500MPa
fck := 20MPa
fyd := 420MPa
fcd := 13.3MPa
Es = 210 Å" GPa
fcm := fck + 8MPa = 28 Å" MPa
Ecm = 30 Å" GPa
Buckling factor:
b Å" h3
Ic := = 2.133 × 10- 3 m4
12
EcmÅ"Ic
lcol
1
kA := = 1 ² := 1 + = 1.167 l0 := ² Å" lcol = 4.317 m
Ecm Å" Ic 5kA + 1
ëÅ‚ öÅ‚
ìÅ‚ ÷Å‚
lcol
íÅ‚ Å‚Å‚
Creep coefficient:
Õ := 2.5
Ac := b Å" h = 0.16 m2
u := 2 Å" (b + h) = 1.6 m
2 Å" Ac
h0 := = 0.2 m
u
RH := 50%
age of concrete at loading (days)
t0 := 60
RH
100
ÕRH := 1 + 1 - = 1.145
3
0.1 Å" h0
16.8
²fcm := = 3.175
fcm
1
²t0 := = 0.422
0.1 + t00.2
Õ0 := ÕRH Å" ²fcm Å" ²t0 = 1.535
M0Edqp
Õeff := Õ0 Å" = 0.114
M0Ed1
2. Strength calculations - buckling
2.1 Effective column height
lo := ² Å" lcol = 4.317 m
2.2 Assumption of cross-section dimensions (declared in data set)
b = 0.4 m
h = 0.4 m
2.3 Assumption of reinforcement centroid location
concrete cover
cmin := 15mm "c := 5mm Õg := 20mm Õs := 8mm c1 := max 20mm , Õg = 20 Å" mm
( )
cmin := max Õg, 10mm , 10mm = 20 Å" mm
( )
"cdev := 5mm cnom := cmin + "cdev = 25 Å" mm
Õw1 := 6mm c := cnom + Õs = 33 Å" mm
a1 := cmin + "c + Õs + 0.5 Å" Õg a1 = 0.043 m
a2 := a1 = 0.043 m
d := h - a1 = 0.357 m
¾efflim := 0.5
Limit realive depth of the compression zone:
2.4 Limit depth of the compression zone of concrete
xeff.lim := ¾efflim Å" d = 0.179 m
2.5 a Column slenderness
Ic
b Å" h3
Ac := b Å" h = 0.16 m2 Ic := = 2.133 × 10- 3 m4 i := = 0.115 m
12 Ac
lo
 := = 37.383
i
2.5b Boundary slenderness
M0Ed2
1
A := = 0.978 rm := = 0.865
1 + 0.2 Å" Õeff M0Ed1
C := 1.7 - rm = 0.835
B := 1.1
NEd
n := = 0.652
fcd Å" Ac
20 Å" A Å" B Å" C
lim := = 22.256
n
> slender column
 = 37.383 lim = 22.256
2.6.a Initial eccentric
M0Ed1
eo := = 0.136 m
NEd
2.6.b Accidental eccentric
lo
= 0.011 m
400
h
= 0.013 m
30
lo
ëÅ‚ h öÅ‚
ei := max , , 0.02m = 0.02 m
ìÅ‚ ÷Å‚
400 30
íÅ‚ Å‚Å‚
2.7 II order influences
Áb := 0.015 reinforcement ratio asumption
fck
k1 := = 1
20MPa

k2 := n Å" = 0.143 k2 := 0.2
170
k1 Å" k2
Kc := = 0.18
1 + Õeff
Ks := 1
Second moment of area Is
Is := Áb Å" b Å" d Å" 0.5 Å" h - a1 = 5.28 × 10- 5 m4
( )2
Nominal sifness
EI := Kc Å" Ecd Å" Ic + Ks Å" Es Å" Is = 20.664 Å" MN Å" m2
2.7 b Buckling force NB
Ä„2 Å" EI
NB := = 10945.11 Å" kN
lo2
2.7 c Factor increasing eccentric ·
Co := 8
Ä„2
² := = 1.003 Å" 1.23
Co
² := 1.23
²
· := 1 + = 1.178
NB
- 1
NEd
2.7 d total eccentric
etot := · Å" eo + ei = 0.184 m
( )
2.8 internal forces for section sizing
MEd := NEd Å" etot = 254.867 Å" kNm
NEd = 1.387 × 103 Å" kN
3. Strength calculations section sizing
3.1 Eccentic about reinforcement A.si i A.s2
e1 := etot + 0.5 Å" h - a1 = 0.341 m
e2 := etot - 0.5 Å" h + a2 = 0.027 m
3.2 Minimal total reinforcement
ëÅ‚0.1 NEd öÅ‚
Asmin := max Å" , 0.002 Å" b Å" h = 3.302 × 10- 4 m2
ìÅ‚ ÷Å‚
fyd
íÅ‚ Å‚Å‚
3.3 Reinforcement area
Assumed symmetrical reinforcement
As1 := As2
NEd
> small eccentricity
xeff := = 0.261 m xeff.lim = 0.179 m
fcd Å" b
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 2.923 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = 1.294 × 10- 3 Ãs1 := min µs1 Å" Es , fyd = 271.657 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 1.87 × 10- 3 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 1.369 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
II iteration:
AsN < AsM
> small eccentricity
xeff := 0.267 Å" m xeff.lim = 0.179 m
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 2.936 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = 1.18 × 10- 3 Ãs1 := min µs1 Å" Es , fyd = 247.753 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 1.453 × 10- 3 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 1.421 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
As1 := AsN = 1.453 × 10- 3 m2 As2 := As1 = 1.453 × 10- 3 m2
Number of bars
Õg := 20mm
4As1
n1 := = 4.627
Ä„ Õg2
n1 := 5
Õg
a1 := cnom + Õw1 + = 0.041 m
2
d := h - a1 = 0.359 m
Ä„ Å" Õg2
As1 := n1 Å" = 1.571 × 10- 3 m2 As2 := As1
4
3.7 Total reinforcement ratio
As1 + As2
Áprov := = 0.022 Ácrit := 0.015
>
b Å" d
4. Checking correctness of buckling prediction
4.1 Second moment of area for reinforcement correction
l's
I's := As1 Å" 0.5 Å" h - a1 + As2 Å" 0.5 Å" h - a2 = 7.843 × 10- 5 m4
( )2 ( )2
EI' := Kc Å" Ecd Å" Ic + Ks Å" Es Å" I's = 2.605 × 107 m3 Å" kg Å" s- 2
Ä„2 Å" EI'
N'B := = 1.38 × 107 m Å" kg Å" s- 2
lo2
²
·' := 1 + = 1.137
N'B
- 1
NEd
e'tot := ·' Å" eo + ei = 0.177 m
( )
4.3 Internal forces for section sizing (after correction of buckling influence)
NEd = 1.387 × 103 Å" kN
MEd := NEd Å" e'tot = 246.001 m Å" kN
4.4 Total eccentrices (for assumed and provided reinforcement) comparision
e'tot
= 0.965 - eccentric ratio including, that assumption was on safe side
etot
6. Ultimate capacity of section
Column cross section:
b = 0.4 m h = 0.4 m
Tensioned reinforcement:
As1 = 1.571 × 10- 3 m2 a1 = 0.041 m
a2 = 0.043 m
Compression reinforcement:
As2 = 1.571 × 10- 3 m2
internal forces:
NEd = 1.387 × 103 Å" kN
M0Ed1 = 188.54 m Å" kN
6.1 Effective depth of the section:
d := h - a1 = 0.359 m
6.2 Limit depth of the compression zone of concrete
xeff.lim := ¾eff.lim Å" d = 0.18 m
6.3 total eccentric
etot := e'tot = 0.177 m
6.4 Eccentrics about centroids of tensioned As1 and compression As2 reinforcement
e1 := etot + 0.5 Å" h - a1 = 0.336 m
e2 := etot - 0.5 Å" h + a1 = 0.018 m
6.5 Depth of the compression zone of the concrete
NEd - fyd Å" As2 - As1
( )
xeff := = 0.326 m
 Å" · Å" fcd Å" b
<
xeff.lim = 0.18 m xeff = 0.326 m
1
( - ¾efflim Å" NEd - fyd Å" As2 + 1 + ¾efflim Å" fyd Å" As1
) ( ) ( )
xeff := d = 0.267 m
 Å" Å" fcd Å" b Å" d Å" 1 - ¾efflim + 2 Å" fyd Å" As1
( )
îÅ‚· Å‚Å‚
ðÅ‚ ûÅ‚
< <
xeff.lim = 0.18 m xeff = 0.267 m d = 0.359 m
6.6 Ultimate capacity
<
NEd Å" e1 = 466.488 Å" kN Å" m MRd := fcd Å" b Å" xeff Å" d - 0.5xeff + fyd Å" As2 Å" d - a2 = 528.771 Å" kN Å" m
( ) ( )
condition satisfied
DATA
Column hight
lcol := 3.7m
Column dimensions
b := 0.40m h := 0.4m
Internal
NEd := 1386.71kN
forces
M0Ed1 := 163.04kNm M0Ed2 := 188.54kNm
M0Edqp := 7.96kNm
Exposure class
X0
Concrete class C20 / 25 Steel class
AIIIN
µcu2 := 0.0035
fyk := 500MPa
fck := 20MPa
fyd := 420MPa
fcd := 13.3MPa
Es = 210 Å" GPa
fcm := fck + 8MPa = 28 Å" MPa
Ecm = 30 Å" GPa
Buckling factor:
b Å" h3
Ic := = 2.133 × 10- 3 m4
12
EcmÅ"Ic
lcol
1
kA := = 1 ² := 1 + = 1.167 l0 := ² Å" lcol = 4.317 m
Ecm Å" Ic 5kA + 1
ëÅ‚ öÅ‚
ìÅ‚ ÷Å‚
lcol
íÅ‚ Å‚Å‚
Creep coefficient:
Õ := 2.5
Ac := b Å" h = 0.16 m2
u := 2 Å" (b + h) = 1.6 m
2 Å" Ac
h0 := = 0.2 m
u
RH := 50%
age of concrete at loading (days)
t0 := 60
RH
100
ÕRH := 1 + 1 - = 1.145
3
0.1 Å" h0
16.8
²fcm := = 3.175
fcm
1
²t0 := = 0.422
0.1 + t00.2
Õ0 := ÕRH Å" ²fcm Å" ²t0 = 1.535
M0Edqp
Õeff := Õ0 Å" = 0.075
M0Ed1
2. Strength calculations - buckling
2.1 Effective column height
lo := ² Å" lcol = 4.317 m
2.2 Assumption of cross-section dimensions (declared in data set)
b = 0.4 m
h = 0.4 m
2.3 Assumption of reinforcement centroid location
concrete cover
cmin := 15mm "c := 5mm Õg := 20mm Õs := 8mm c1 := max 20mm , Õg = 20 Å" mm
( )
cmin := max Õg, 10mm , 10mm = 20 Å" mm
( )
"cdev := 5mm cnom := cmin + "cdev = 25 Å" mm
Õw1 := 6mm c := cnom + Õs = 33 Å" mm
a1 := cmin + "c + Õs + 0.5 Å" Õg a1 = 0.043 m
a2 := a1 = 0.043 m
d := h - a1 = 0.357 m
¾efflim := 0.5
Limit realive depth of the compression zone:
2.4 Limit depth of the compression zone of concrete
xeff.lim := ¾efflim Å" d = 0.179 m
2.5 a Column slenderness
Ic
b Å" h3
Ac := b Å" h = 0.16 m2 Ic := = 2.133 × 10- 3 m4 i := = 0.115 m
12 Ac
lo
 := = 37.383
i
2.5b Boundary slenderness
M0Ed1
1
A := = 0.985 rm := = 0.865
1 + 0.2 Å" Õeff M0Ed2
C := 1.7 - rm = 0.835
B := 1.1
NEd
n := = 0.652
fcd Å" Ac
20 Å" A Å" B Å" C
lim := = 22.427
n
> slender column
 = 37.383 lim = 22.427
2.6.a Initial eccentric
M0Ed1
eo := = 0.118 m
NEd
2.6.b Accidental eccentric
lo
= 0.011 m
400
h
= 0.013 m
30
lo
ëÅ‚ h öÅ‚
ei := max , , 0.02m = 0.02 m
ìÅ‚ ÷Å‚
400 30
íÅ‚ Å‚Å‚
2.7 II order influences
Áb := 0.015 reinforcement ratio asumption
fck
k1 := = 1
20MPa

k2 := n Å" = 0.143 k2 := 0.2
170
k1 Å" k2
Kc := = 0.186
1 + Õeff
Ks := 1
Second moment of area Is
Is := Áb Å" b Å" d Å" 0.5 Å" h - a1 = 5.28 × 10- 5 m4
( )2
Nominal sifness
EI := Kc Å" Ecd Å" Ic + Ks Å" Es Å" Is = 21.011 Å" MN Å" m2
2.7 b Buckling force NB
Ä„2 Å" EI
NB := = 11128.58 Å" kN
lo2
2.7 c Factor increasing eccentric ·
Co := 8
Ä„2
² := = 1.003 Å" 1.23
Co
² := 1.23
²
· := 1 + = 1.175
NB
- 1
NEd
2.7 d total eccentric
etot := · Å" eo + ei = 0.162 m
( )
2.8 internal forces for section sizing
MEd := NEd Å" etot = 224.176 Å" kNm
NEd = 1.387 × 103 Å" kN
3. Strength calculations section sizing
3.1 Eccentic about reinforcement A.si i A.s2
e1 := etot + 0.5 Å" h - a1 = 0.319 m
e2 := etot - 0.5 Å" h + a2 = 0.005 m
3.2 Minimal total reinforcement
ëÅ‚0.1 NEd öÅ‚
Asmin := max Å" , 0.002 Å" b Å" h = 3.302 × 10- 4 m2
ìÅ‚ ÷Å‚
fyd
íÅ‚ Å‚Å‚
3.3 Reinforcement area
Assumed symmetrical reinforcement
As1 := As2
NEd
> small eccentricity
xeff := = 0.261 m xeff.lim = 0.179 m
fcd Å" b
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 2.923 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = 1.294 × 10- 3 Ãs1 := min µs1 Å" Es , fyd = 271.657 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 1.87 × 10- 3 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 1.086 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
II iteration:
AsN < AsM
> small eccentricity
xeff := 0.275 Å" m xeff.lim = 0.179 m
µcu := µcu2 = 3.5 × 10- 3  := 0.8 · := 1
µcu Å" xeff - a2
( )
µs2 := = 2.953 × 10- 3 Ãs2 := min µs2 Å" Es , fyd = 420 Å" MPa
( )
xeff
µcu Å" h - xeff - a2
( )
µs1 := = 1.044 × 10- 3 Ãs1 := min µs1 Å" Es , fyd = 219.164 Å" MPa
( )
xeff
NEd - · Å" fcd Å" b Å"  Å" xeff
AsN := = 1.077 × 10- 3 m2
Ãs2 - Ãs1
MEd - 0.5 Å" · Å" fcd Å" b Å"  Å" xeff Å" h -  Å" xeff
( )
AsM := = 1.184 × 10- 3 m2
h
ëÅ‚ öÅ‚
- a2 Å" Ãs2 + Ãs1
( )
ìÅ‚ ÷Å‚
2
íÅ‚ Å‚Å‚
As1 := AsM = 1.184 × 10- 3 m2 As2 := As1 = 1.184 × 10- 3 m2
Number of bars
Õg := 20mm
4As1
n1 := = 3.77
Ä„ Õg2
n1 := 4
Õg
a1 := cnom + Õw1 + = 0.041 m
2
d := h - a1 = 0.359 m
Ä„ Å" Õg2
As1 := n1 Å" = 1.257 × 10- 3 m2 As2 := As1
4
3.7 Total reinforcement ratio
As1 + As2
Áprov := = 0.018 Ácrit := 0.015
>
b Å" d
4. Checking correctness of buckling prediction
4.1 Second moment of area for reinforcement correction
l's
I's := As1 Å" 0.5 Å" h - a1 + As2 Å" 0.5 Å" h - a2 = 6.274 × 10- 5 m4
( )2 ( )2
EI' := Kc Å" Ecd Å" Ic + Ks Å" Es Å" I's = 2.31 × 107 m3 Å" kg Å" s- 2
Ä„2 Å" EI'
N'B := = 1.223 × 107 m Å" kg Å" s- 2
lo2
²
·' := 1 + = 1.157
N'B
- 1
NEd
e'tot := ·' Å" eo + ei = 0.159 m
( )
4.3 Internal forces for section sizing (after correction of buckling influence)
NEd = 1.387 × 103 Å" kN
MEd := NEd Å" e'tot = 220.77 m Å" kN
4.4 Total eccentrices (for assumed and provided reinforcement) comparision
e'tot
= 0.985 - eccentric ratio including, that assumption was on safe side
etot
6. Ultimate capacity of section
Column cross section:
b = 0.4 m h = 0.4 m
Tensioned reinforcement:
As1 = 1.257 × 10- 3 m2 a1 = 0.041 m
a2 = 0.043 m
Compression reinforcement:
As2 = 1.257 × 10- 3 m2
internal forces:
NEd = 1.387 × 103 Å" kN
M0Ed1 = 163.04 m Å" kN
6.1 Effective depth of the section:
d := h - a1 = 0.359 m
6.2 Limit depth of the compression zone of concrete
xeff.lim := ¾eff.lim Å" d = 0.18 m
6.3 total eccentric
etot := e'tot = 0.159 m
6.4 Eccentrics about centroids of tensioned As1 and compression As2 reinforcement
e1 := etot + 0.5 Å" h - a1 = 0.318 m
e2 := etot - 0.5 Å" h + a1 = 2.039 × 10- 4 m
6.5 Depth of the compression zone of the concrete
NEd - fyd Å" As2 - As1
( )
xeff := = 0.326 m
 Å" · Å" fcd Å" b
<
xeff.lim = 0.18 m xeff = 0.326 m
1
( - ¾efflim Å" NEd - fyd Å" As2 + 1 + ¾efflim Å" fyd Å" As1
) ( ) ( )
xeff := d = 0.273 m
 Å" Å" fcd Å" b Å" d Å" 1 - ¾efflim + 2 Å" fyd Å" As1
( )
îÅ‚· Å‚Å‚
ðÅ‚ ûÅ‚
< <
xeff.lim = 0.18 m xeff = 0.273 m d = 0.359 m
6.6 Ultimate capacity
<
NEd Å" e1 = 441.257 Å" kN Å" m MRd := fcd Å" b Å" xeff Å" d - 0.5xeff + fyd Å" As2 Å" d - a2 = 489.73 Å" kN Å" m
( ) ( )
condition satisfied
689.058 Å" kN
kN
kNm := kN Å" m
1
² := 1 + = 1.167
5kA + 1
kNm := kN Å" m
INTERNAL MX +
Ecm
Ecd :=
1.2
h0 := 200
RH := 50
fcm := 28
INTERNAL MX -
Ecm
Ecd :=
1.2
h0 := 200
RH := 50
fcm := 28
INTERNAL MY +
Ecm
Ecd :=
1.2
h0 := 200
RH := 50
fcm := 28
INTERNAL MY -
Ecm
Ecd :=
1.2
h0 := 200
RH := 50
fcm := 28
EDGE MX +
Ecm
Ecd :=
1.2
h0 := 200
RH := 50
fcm := 28
EDGE MX -
Ecm
Ecd :=
1.2
h0 := 200
RH := 50
fcm := 28
EDGE MY +
Ecm
Ecd :=
1.2
h0 := 200
RH := 50
fcm := 28
EDGE MY -
Ecm
Ecd :=
1.2
h0 := 200
RH := 50
fcm := 28


Wyszukiwarka

Podobne podstrony:
Mathcad OBLICZENIA
Mathcad Obliczeniaa
Mathcad Obliczenia MTM
Mathcad Obliczenia reduktor
Mathcad obliczenia podziemne xmcd
Mathcad Obliczenia dachu IBDpopr
Mathcad obliczenia żelbet projekt 14 czerwiec 2011 bez warnów
Mathcad most obliczenia
Mathcad Od obliczen do programowania mathnp
Mathcad GEOLOGIA OBLICZENIA xmcd
Mathcad Laborki K1 MG
cw6 arkusz obliczeniowy przyklad

więcej podobnych podstron