WM lab3 MES prety


Instytut Mechaniki i Inżynierii Obliczeniowej
Wydział Mechaniczny Technologiczny
Politechnika Śląska
www.imio.polsl.pl
LABORATORIUM
WYTRZYMAAOŚCI MATERIAAÓW
Zastosowanie
metody elementów skończonych
do rozwiązywania układów prętowych
ZASTOSOWANIE MES DO ROZWIZYWANIA UKAADÓW PRTOWYCH 2
1. CEL ĆWICZENIA
Zapoznanie się z metodą elementów skończonych w aspekcie zastosowania do rozwiązy-
wania układów prętowych.
Zapoznanie się z pakietem metody elementów skończonych (PROZC, KRATA, BELKA,
RAMA2D, PRO-MES, ABC, PATRAN lub podobne) i jego obsługą w przypadku zagad-
nień prętowych.
Wyznaczenie rozkładu przemieszczeń i naprężeń w ramach i kratownicach statycznie wy-
znaczalnych i niewyznaczalnych.
2. WPROWADZENIE
Metoda elementów skończonych (MES) jest jedną z najczęściej stosowanych metod kom-
puterowych (numerycznych) służących do rozwiązywania tzw. zagadnień brzegowych me-
chaniki. Istota metody sprowadza się do zastąpienia modelu ciągłego układu mechanicznego
modelem dyskretnym. Model dyskretny przyjmuje w rezultacie postać układu równań alge-
braicznych.
W niniejszym rozdziale przedstawiono zastosowanie MES do rozwiązywania układów
prętowych, w tym prętów rozciąganych (ściskanych), belek, kratownic i ram.
Podstawy teoretyczne metody elementów skończonych dla układów prętowych przedsta-
wiono w literaturze zamieszczonej na końcu rozdziału. W niniejszym rozdziale przedstawiono
metodę elementów skończonych wykorzystując koncepcję całki ważonej oraz tzw. sformuło-
wanie słabe, które szczegółowo przedstawiono w [2]. Inne, alternatywne sformułowanie, rów-
noważne niniejszemu, można wyprowadzić z warunku minimalizacji energii potencjalnej.
3. PODSTAWY TEORETYCZNE
3.1 Metoda elementów skończonych dla prętów rozciąganych (ściskanych) i kratownic
Rozważany jest pręt prosty o zmiennym przekroju A(x) i długości L, wykonany z materiału
o module Younga E, obciążony obciążeniem ciągłym q(x) rozłożonym wzdłuż długości pręta
i siłą Q0 na końcu (rys. 1a, b).
Pole przemieszczeń osiowych spełnia następujące równanie różniczkowe
d du(x)
ća(x)
+ q(x) = 0 dla 0 < x < L , (1)

dx dx
Łł
które należy uzupełnić warunkami brzegowymi w postaci:
du
ć
u(0) = u0, a = Q0 , (2)
Ł
dxł x= L
gdzie:
a = a(x)=A(x)E  sztywność na rozciąganie.
Aby rozwiązać równanie (1), tzn. znalezć pole przemieszczeń u(x) przy warunkach brze-
gowych (2), dzieli się obszar pręta W(x) na N odcinków o długości he , e = 1,2,...,N, które
nazywa się elementami skończonymi (rys. 1c).
Rozważmy typowy element skończony We = (xA, xB) = (xe, xe+1), którego końce mają współ-
rzędne x = xA i x = xB (rys. 2a).
ZASTOSOWANIE MES DO ROZWIZYWANIA UKAADÓW PRTOWYCH 3
Oznaczmy przemieszczenia węzłowe uie i siły normalne Qie , i = 1,2, zdefiniowane na rys.
2b. Poszukiwane pole przemieszczeń na elemencie We aproksymować będziemy za pomocą
n
e e
pewnego wielomianu potęgowego u(x) U = N (x) , gdzie ue są nieznanymi wartoś-
uj j j
j=1
e
ciami węzłowymi przemieszczeń, natomiast N (x) są funkcjami interpolacyjnymi zwanymi
j
także funkcjami kształtu.
Wówczas równanie różniczkowe (1) spełnione jest na elemencie We tylko w sposób przy-
bliżony. W celu obliczenia nieznanych wartości przemieszczeń węzłowych ue żądamy, aby
j
e
równanie różniczkowe (1) spełnione było przez przybliżenie U w sensie tzw. całki ważonej,
która określona jest następująco:
xB
d du

w(x) a + qł dx = 0 , (3)

ędx dx ś

xA
gdzie w(x)  tzw. funkcja ważona.
a)
du
ć
Q0 = a

dx
Ł ł
x=L
x
L
b)
q(x)
u = u0 0
du
a Q0
dx
= u0 0
x
q(x)
c)
h1 h2 he hN
2 e e+1 N+1
... ...
1 2 e N
Numer elementu Numer węzła
Rys. 1. a) Pręt rozciągany; b) idealizacja matematyczna;
c) dyskretyzacja elementami skończonymi
ZASTOSOWANIE MES DO ROZWIZYWANIA UKAADÓW PRTOWYCH 4
Całkując równanie (3) przez części otrzymuje się:
xB
dw du
ća - wqdx - w(xA)QA - w(xB)QB , (4)
0 =


dx dx
Łł
xA
gdzie:
du du
ća ća
-QA = , - QB = (5)

dx dx
Ł ł Ł ł
xA xB
są siłami normalnymi w węzłach elementu.
Równanie (4) nazywa się sformułowaniem słabym zagadnienia brzegowego opisanego
równaniem różniczkowym (1) z warunkami brzegowymi (2). Termin  sformułowanie słabe
pochodzi od tego, że w równaniu (4)  słabsze są wymagania dotyczące różniczkowalności
pola przemieszczeń u(x).
xB
a)
xA he
x = x - xA
A B
x
x
x = 0
x = he
b)
e e
u(xA) = u1 u(xB) = u2
du du
ć
e e
Q1 =-ć a Q2 = a

1 2
dx
dx
Ł ł Ł ł
x=xA x=xB
Rys. 2. a) Typowy element skończony; b) definicja przemieszczeń i sił węzłowych
W równaniu różniczkowym (1) u(x) musi być funkcją dwukrotnie różniczkowalną, nato-
miast w sformułowaniu słabym (4) wymaganie różniczkowalności obniżone jest o jeden rząd
e
i funkcja U , aproksymująca pole przemieszczeń u(x) na elemencie skończonym We, może
być funkcją liniową i przyjmuje postać:
2
e e e e e e
U (x) = N1 (x)u1 + N2 (x)u2 = (x)ue , (6)
N j j
j=1
gdzie funkcje kształtu (funkcje interpolacyjne) wyrażają się wzorami:
xB - x x - xA
e e
N1 (x) = , N2 (x) = (7)
xB - xA xB - xA
W metodzie elementów skończonych podstawowe równania metody wyprowadzić można
korzystając ze sformułowania słabego (4) przyjmując, że pole przemieszczeń aproksymowane
jest przybliżeniem (6), a funkcja wagowa wyrażona jest przez funkcję kształtu, tzn.
ee
w(x) = N1 (x) i w(x) = N2 (x) . Otrzymuje się wówczas dwa równania, które w postaci macie-
rzowej przyjmują postać:
ZASTOSOWANIE MES DO ROZWIZYWANIA UKAADÓW PRTOWYCH 5
e e
ł ue = f + Qe ; (8)
{ } { } { }
K
gdzie:
e e
ł ł  kwadratowa macierz sztywności elementu zdefiniowana następująco:
=
K Kij
xe+1
ć dN dN
dNie e he ć dNie e
e jj
Kij = (9)
a dx = 0 a dx
e e

dx dx dx dx
xe Ł ł Ł ł
e
f = fie  macierz kolumnowa sił określona zależnością:
{ } { }
xe+1 he
fie = qeNiedx = qeNiedx (10)

xe 0
oraz:
2
e
(xie)Qe = Qie , (11)
N j j
j=1
przy czym he = xB - xA = xe+1 - xe jest długością e-tego elementu skończonego.
e e
Macierze ł i f dla liniowych funkcji kształtu (7) mają postać:
{ }
K
1 -1
e
łae ł
=
ś
K he ę 1, (12)
-1
1
qehe
e
{ } (13)
f =

2

Macierz sztywności elementu (12) jest macierzą symetryczną. W równaniach (9), (10),
(12) i (13) przyjęto, że ae i qe przyjmują stałe wartości na We.
W przypadku kratownicy (układu prętowego wykonanego z prętów połączonych przegu-
bowo i przenoszących tylko rozciąganie bądz ściskanie) przemieszczenia węzłowe i siły wę-
złowe wygodnie jest przedstawić w każdym węzle za pomocą dwóch składowych w układzie
lokalnym (rys. 3a) jak i globalnym (rys. 3b).
e
y
e
u4
u3 x y
u4 e
e
Q3 2 e
u3
e
2 Q3
e
e
Q4
Q4 e
y
e
u2
u2 u1e We
a a
e
e
Q1
u1
he 1
e
1
Q2
e
e
Q2
Q1
x x
0 0
a) b)
Rys. 3. Element skończony kratownicy:
a) w układzie lokalnym; b) w układzie globalnym
Zależność między przemieszczeniami węzłowymi i siłami węzłowymi w układzie lokal-
nym (rys. 3a) ma postać:
e
ł ue = Qe (14)
{ } { }
K
ZASTOSOWANIE MES DO ROZWIZYWANIA UKAADÓW PRTOWYCH 6
e
Macierz sztywności elementu kratownicy w układzie lokalnym ł jest wyrażona nastę-
K
pująco:
1 0 -1 0
ł
EeAe ę 0 0 0ś
e
ęś
ł = , (15)
K
he ę sym. 1 0ś
ę


gdzie:
EeAe  sztywność na rozciąganie (ściskanie) e-tego elementu kratownicy;
he  długość e-tego elementu kratownicy.
W układzie globalnym (rys. 3b) macierzowe równanie dla e-tego elementu ma postać:
e
ł ue = Qe , (16)
{ } { }
K
gdzie macierz sztywności elementu:
T
e e e e
ł ł ł ł (17)
=
K T K T
e
Macierz transformacji ł ma postać:
T
cosa sina 0 0
ł
ęś
e
łę-sina cosa 0 0 ś (18)
=
T ę 0 0 cosa sina ś
ęś
0 0 -sina cosa

Szczegółowy opis metody elementów skończonych dla pręta rozciąganego (ściskanego)
i płaskiej kratownicy można znalezć w pracy [2]. Edukacyjne programy MES do obydwu za-
gadnień (odpowiednio PROZC i KRATA) znajdują się na stronach internetowych:
http://dydaktyka.polsl.pl/mes.
3.2 Metoda elementów skończonych dla prętów zginanych i ram
Rozważany jest pręt prosty (belka) o zmiennej sztywności b(x)=EI(x) (E  moduł Younga,
I  moment bezwładności) i długości L, obciążony obciążeniem ciągłym o intensywności q(x)
oraz siłą F0 i momentem M0 na końcu (rys. 4a).
Pole przemieszczeń poprzecznych (ugięć) v = v(x) spełnia równanie różniczkowe:
22
d ć
d v(x)
= q(x) dla 0dx2 b(x) dx2
Łł
ZASTOSOWANIE MES DO ROZWIZYWANIA UKAADÓW PRTOWYCH 7
Równanie (19) należy uzupełnić warunkami brzegowym:
dv
v(0) = v0, J = = J0
x=0
dx

(20)
ż
23
d v d v
-b = M0, - b = F0
dx2 x=L dx3 x=L
Między momentami gnącymi M, siłami poprzecznymi T i obciążeniami ciągłymi q(x) za-
chodzą następujące relacje (rys. 11.4b):
2
d v dM dT
M = -b , T = , = -q (21)
dx2 dx dx
a)
q(x)
F0
M0
x
y
b)
M M+dM
x
dx
T T+dT
Rys. 4. a) Belka zginana; b) siły wewnętrzne w belce
Aby rozwiązać równanie (19), tzn. znalezć pole ugięć v(x) przy warunkach brzegowych
(20), dzielimy obszar pręta W(0, L) na N elementów skończonych (rys. 5a).
Rozważmy typowy element skończony We(xe, xe+1) ze zdefiniowanymi na rys. 5b prze-
mieszczeniami uogólnionymi (v,Q ) i siłami uogólnionymi (T, M ).
Dla przyjętych zwrotów przemieszczeń i sił uogólnionych wprowadzono następującą no-
tację:
dv
J = -
(22)
dx
oraz
22
ł
ć d v
d d v ć
ee
Q1 , Q2
ędx dx2 ś b dx2
b
xe
Ł ł xe +1 Ł ł

(23)
22
ł
ć d v
d d v ć
ee
Q3 , Q4 b
ędx dx2 ś
b
dx2 xe
Ł ł xe +1 Ł ł

gdzie:
ZASTOSOWANIE MES DO ROZWIZYWANIA UKAADÓW PRTOWYCH 8
e e
Q1 ,Q3  siły poprzeczne;
e e
Q2 ,Q4  momenty gnące.
a)
N N+1
1 2
h1 h2 he hN
b)
e e
J1 = u2 J2 = u4
e e
v1 = u1 v2 = u3
e e
Q2 Q4
x
2
1
e e
dx
Q1 Q3
xc
x
Rys. 5 a) Podział belki na elementy skończone;
b) definicja przemieszczeń i sił uogólnionych
Ugięcie v(x) będzie aproksymowane na elemencie We za pomocą pewnego wielomianu
Ve(x). Wówczas równanie różniczkowe (19) spełnione jest na elemencie We w sposób przy-
bliżony. Żądamy, aby równanie (19) spełnione było przez Ve w sensie całki ważonej:
xe +1
2 2
ł
ć
d d v
0 = w(x) (24)
ędx dx2 - qś dx
b
2
Ł ł
xe
gdzie: w(x)  funkcja ważona.
Całkując (24) przez części otrzymujemy następujące sformułowanie słabe dla belki:
xe +1
2 2
ćć e dw
d v d w dw
ć
e e e
0 = Q2 - w(xe+1)Q3 - Q4 (25)
b dx2 dx2 - wqdx - w(xe)Q1 -

xe+1
dx dx
Ł ł
ŁłŁ ł xe
xe
Warto zwrócić uwagę, że rząd różniczkowalności funkcji ugięcia v(x) został obniżony
z rzędu czwartego do rzędu drugiego. Ponieważ całkowita liczba warunków dotyczących
przemieszczeń uogólnionych dla elementu belkowego wynosi cztery (po dwa w każdym
węzle), więc wygodnie jest przyjąć czteroparametrowy wielomian aproksymujący dla v(x):
4
e e e e e e e e e e e
v(x) V (x) = u1 N1 + u2N2 + u3N3 + u4N4 = N , (26)
uj j
j=1
ZASTOSOWANIE MES DO ROZWIZYWANIA UKAADÓW PRTOWYCH 9
e
gdzie funkcje kształtu N mają postać:
j
2 3 2
ć ć
x - xe x - xe
ee
N1 = 1- 3 + 2 , N2 = - x - xe 1-
( )ć x - xe
he he he ł
Ł ł Ł ł Ł
(27)
2 3
ć x - xe 2 x - xe ł
ć ć
x - xe x - xe
ee
N3 = 3 - 2 , N4 = - x - xe ę - ś
( )
he he
Ł ł Ł ł ę
Ł he ł he ś
W metodzie elementów skończonych podstawowe równania metody wyprowadzamy ze
sformułowania słabego (25) przyjmując przybliżenie (26) oraz zakładając, że funkcja ważona
e e e e
w(x) wyrażona jest przez funkcje kształtu, tzn. w = N1 , w = N2 , w = N3 i w = N4 .
Otrzymujemy wówczas cztery równania, które w postaci macierzowej mają postać :
e
e e e e
ł
K11 K12 K13 K14 u1 F1e

ęKe K22 K23 K24 ś
e e
e e e
21
ę ś u2 F2 , (28)
ż ż
e e e e
e e
ęK31 K32 K33 K34 ś
u3 F3
ę ś
e e e e
e
K42 K43 K44 u4 F4e
K41

gdzie:
e
ł  macierz sztywności elementu belkowego, której elementy określone są nas-
K
tępująco:
xe+1 2
d N
d Nie 2 e
e j
Kij = dx (29)

dx2 dx2
xe
e
F  macierz kolumnowa sił:
{ }
xe+1
Fie = Nieqdx - Qie (30)

xe
e e
Współczynniki Kij są symetryczne, tzn. Kij = Ke .
ji
Przy przyjętej aproksymacji ugięć v(x) za pomocą (26) macierze sztywności i sił przyjmują
postać:
6 -3h -3 -3h
ł
ęś
e
ł2b ę-3h 2h2 3h h2 ś, (b = EI = const.)
=
K h3 ę -6 3h 6 3h ś
ęś
-3h h2 3h 2h2 (31)
6 Q1

Q
qh
-h ,
2
e
F = + (q = const.)
{ }
ż Q ż
12 6
3

Q4
h

Znając macierze sztywności i sił dla elementu belkowego można określić macierz sztyw-
ności i sił dla całej belki uwzględniając warunki zgodności uogólnionych przemieszczeń i wa-
runki równowagi dla sił uogólnionych.
ZASTOSOWANIE MES DO ROZWIZYWANIA UKAADÓW PRTOWYCH 10
Rozważmy płaską ramę, którą dzielimy na elementy skończone We, e = 1,2,...,N. Element
skończony dla ramy jest złożeniem elementu prętowego o sztywności EeAe i obciążeniu
ciągłym qR i elementu belkowego o sztywności EeIe i obciążeniu ciągłym qZ. W każdym węzle
mamy po trzy uogólnione przemieszczenia węzłowe i odpowiadające im uogólnione siły węz-
łowe. Uogólnione przemieszczenia i siły węzłowe dla elementu skończonego ramy mogą być
przedstawione w układzie lokalnym i globalnym (rys. 6).
e
y y
e
e
u5 e
u5e u6 u4 x
u6
e
Q4
e
Q4
2
e
2 u4
e
y
e
e
e e
e Q6 Q5
u3 u1e We Q6 Q5 u2 u3
e
a a
e
u2
e
Q1
e
e
Q1 1 e
he
u1
e
Q3 e
Q2
e
Q2
Q3
x
0 0 x
a) b)
Rys. 6. Element skończony ramy: a) w układzie lokalnym; b) w układzie globalnym
W układzie lokalnym element skończony dla ramy jest opisany równaniem:
e
ł ue = Fe (32)
{ } { }
K
W równaniu tym macierze kolumnowe uogólnionych przemieszczeń i sił węzłowych są rów-
ne:
R e
u1
u1e 6qe he Q1
u e Qe
u
Z
6qe he
1
22


e Z 2 e

J1
1
u3 , F e = -qe he Q3

e
u = + (33)
{ } { }
u ż ż ż ż
e R
12 6qe he e
2
44
u Q
e Z e
u2 u5 -6qe he Q5

e Z 2
qe he e
J2
u6 Q6


Macierz sztywności elementu skończonego w układzie lokalnym ma postać:
c 0 0 -c 0 0
ł
ę
0 6 -3he 0 -6 -3he ś
ęś
22
2EeIe ę 0 -3he 2he 0 3he he ś
[Ke] = , (34)
ś
3
he ę 0 0 c 0 0
ę-c ś
ęś
0 -6 3he 0 6 3he
ęś
22
0 -3he he 0 3he 2he
ęś

gdzie:
2
Ahe
e
c =
2Ie
ZASTOSOWANIE MES DO ROZWIZYWANIA UKAADÓW PRTOWYCH 11
Równanie macierzowe dla elementu skończonego ramy w układzie globalnym ma postać:
e
ł ue = Fe (35)
{ } { }
K
e
Macierz sztywności elementu skończonego ramy ł w powyższej zależności ma postać:
K
T
e e e e
ł ł ł ł , (36)
=
K H K H
e
gdzie ł  macierz transformacji w postaci:
H
cosa sina 0 0 0 0
ł
ę
ę-sina cosa 0 0 0 0ś
ś
ę 0 0 1 0 0 0ś
e
ł = (37)
ę
H
0 0 0 cosa sina 0ś
ęś
ęś
0 0 0 -sina cosa 0
ę
0 0 0 0 0 1ś
ęś

Szczegółowy opis metody elementów skończonych dla belki i ramy można znalezć w pra-
cy [2]. Edukacyjne programy MES do obydwu zagadnień (odpowiednio BELKA i RAMA2D)
znajdują się na stronach internetowych:
http://dydaktyka.polsl.pl/mes.
3.3 Przygotowanie zadania do rozwiązania metodą elementów skończonych
W celu rozwiązania konkretnego zadania brzegowego należy utworzyć model numeryczny
rozpatrywanego układu. W rzeczywistym układzie mechanicznym wyodrębnia się części
składowe, które modeluje się jako pręty (belki) lub elementy płaskie dwuwymiarowe (płyto-
we, tarczowe, powłokowe). Niektóre fragmenty konstrukcji mogą być modelowane elementa-
mi przestrzennymi (trójwymiarowymi). W niniejszych rozwiązaniach ograniczono się do ele-
mentów jednowymiarowych - prętowych i belkowych.
Pręty (belki) modelowane są jako dwa węzły połączone za sobą odcinkiem. Węzły repre-
zentują początek i koniec elementu prętowego, odcinek - dane geometryczne i własności ma-
teriałowe. W węzłach można przykładać siły skupione, momenty skupione lub przemieszcze-
nia (liniowe lub kątowe). Wielkości te mogą być również wyznaczane w węzłach.
Podział na węzły i elementy musi uwzględniać rzeczywiste własności układu. Siły skupio-
ne i momenty skupione mogą być przykładane tylko węzłach. W przypadku zastosowania ele-
mentów prętowych połączenia w węzłach nie przenoszą momentów. W przypadku stosowa-
nia elementów belkowych połączenia w węzłach przenoszą siły podłużne, siły poprzeczne
oraz momenty gnące, a dla układów przestrzennych również momenty skręcające. Elementy
prętowe stosowane są do modelowania kratownic, zaś elementy belkowe do modelowania
ram.
Podczas tworzenia modelu numerycznego należy przestrzegać następujących zasad:
1. Elementy mogą łączyć się tylko w węzłach.
2. Siły skupione i momenty skupione mogą być zadawane tylko w węzłach.
3. Podpory mogą być umieszczane tylko w węzłach.
4. Obciążenia ciągłe należy zadać zgodnie z wytycznymi programu komputerowego lub zas-
tąpić obciążeniami skupionymi.
5. Momenty ciągłe rozłożone należy zadać zgodnie z wytycznymi programu komputerowe-
go lub zastąpić momentami skupionymi.
6. Podparcie ciągłe należy zastąpić podporami w węzłach.
ZASTOSOWANIE MES DO ROZWIZYWANIA UKAADÓW PRTOWYCH 12
7. Odległości pomiędzy węzłami (długości elementów) powinny być w miarę równomierne.
8. Różnica pomiędzy numerami węzłów w elemencie powinna być jak najmniejsza (pasmo
minimalne).
9. Układ musi mieć tak narzucone więzy (punkty podparcia), aby nie tworzył mechanizmu.
4. PRZEBIEG ĆWICZENIA
Dla wybranych układów prętowych lub belkowych przeprowadzić obliczenia (wyznacze-
nie przemieszczeń, naprężeń i reakcji podporowych) przy użyciu programu metody elemen-
tów skończonych wskazanego przez prowadzącego.
4.1 Przykładowe zadania
Zadanie 1
Dla pręta stopniowanego podpartego i obciążonego jak na rys. 7 wyznaczyć przemiesz-
czenia punktów B, C oraz rozkład naprężeń. Do obliczeń przyjąć różne warianty obciążeń.
Przykładowe dane:
A1 = 0.01 m2; A2 = 0.005 m2; A3 = 0.008 m2;
l1 = l2 = l3 = 0.5 m;
P1 = 5 kN; P2 = 2 kN;
E = 21011 Pa (stal).
A1 A2 A3
P1 P2
A B C D
l1 l2 l3
Rys. 7. Pręt rozciągany  schemat statyczny
Zadanie 2
Dla kratownicy płaskiej podpartej i obciążonej jak na rys. 8 wyznaczyć przemieszczenia
punktów B, D oraz naprężenia w prętach. Do obliczeń przyjąć różne warianty obciążeń.
Przykładowe dane:
A1 = A2 = A3 = A4 = A5 = 0.01 m2;
l1 = l3 = 1.0 m;
l2 = l4 = 0.5 m;
P1 = 4 kN; P2 = 1 kN
E = 21011 Pa (stal).
ZASTOSOWANIE MES DO ROZWIZYWANIA UKAADÓW PRTOWYCH 13
P2
P1
B
4
D
1 3 5
A
2
B
l2
l3 l4
Rys. 8. Kratownica  schemat statyczny
Zadanie 3
Dla belki podpartej i obciążonej jak na rys. 9 wyznaczyć położenie osi ugiętej oraz rozkład
naprężeń w przekroju poprzecznym wzdłuż osi belki. Wyznaczyć analitycznie przemiesz-
czenia końca swobodnego belki dla wskazanego wariantu obciążenia i porównać z wynikami
otrzymanymi numerycznie. Do obliczeń przyjąć różne warianty obciążenia.
Przykładowe dane:
l1 = l2 = 0.5 m;
I1 = I2 = 8.3310-6 m4;
W1 = W2 = 1.6610-4 m3;
P1 = 7 kN; P2= 3 kN;
M1 = 4 kNm; M2= 2 kNm.
E = 21011 Pa (stal).
M1 M2
P2
P1
A B C
l1 l2
Rys. 9. Belka wspornikowa  schemat statyczny
Zadanie 4
Dla ramy podpartej i obciążonej jak na rys. 10 wyznaczyć położenie osi ugiętej oraz roz-
kład naprężeń. Wyznaczyć analitycznie przemieszczenia końca swobodnego D ramy dla
wskazanego wariantu obciążenia i porównać z wynikami otrzymanymi numerycznie. Do obli-
czeń przyjąć różne warianty obciążenia.
Przykładowe dane:
l1 = l2 = 1.0 m; l3 = 0.5 m
I1 = I2 = I3 = 42.1910-6 m4;
W1 = W2 = W3 = 5.6310-4 m3;
1
l
ZASTOSOWANIE MES DO ROZWIZYWANIA UKAADÓW PRTOWYCH 14
P1 = 8 kN; P2= 4 kN;
M1 = 5 kNm; M2= 3 kNm.
E = 21011 Pa (stal).
M1
P2
P1
C
B
l2
M2
D
A
Rys. 10. Belka statycznie niewyznaczalna  schemat statyczny
5. OPRACOWANIE WYNIKÓW I WYTYCZNE DO SPRAWOZDANIA
Sprawozdanie powinno zawierać:
I. Cel ćwiczenia
II. Krótkie omówienie podstaw MES-u i zasad modelowania w MES-ie
III. Opis rozwiązywanego zagadnienia i modelu numerycznego (z rysunkami)
IV. Wyniki obliczeń w formie wydruków sporządzonych na drukarce. Wyniki powinny
zawierać:
1. Rysunki ugięć dla różnych wariantów obciążenia
2. Wykresy naprężeń dla wykonanych wariantów
V. Analizę wyników
VI. Wnioski
6. PRZYKAADOWE PYTANIA KONTROLNE
1. Do czego służy metoda elementów skończonych?
2. Jakie są istotne cechy metody elementów skończonych?
3. Co to jest macierz sztywności i w jakim wzorze występuje?
4. Co to są funkcje kształtu?
5. Co to są elementy skończone, jakie rodzaje elementów modelują dany przypadek wytrzy-
małościowy?
6. Jakich zasad należy przestrzegać w przypadku rozwiązywania zagadnienia metodą ele-
mentów skończonych?
3
l
1
l
ZASTOSOWANIE MES DO ROZWIZYWANIA UKAADÓW PRTOWYCH 15
7. LITERATURA
1. Beluch W., Burczyński T., Fedeliński P., John A., Kokot G., Kuś W.: Laboratorium
z wytrzymałości materiałów. Wyd. Politechniki Śląskiej, Skrypt nr 2285, Gliwice, 2002.
2. Bąk R., Burczyński T.: Wytrzymałość materiałów z elementami ujęcia komputerowego,
WNT, Warszawa 2001.
3. Jaworski A.: Metoda elementów skończonych w wytrzymałości konstrukcji, Wyd. Poli-
techniki Warszawskiej, Warszawa 1981.
4. Kruszewski J.: Metoda elementów skończonych w dynamice konstrukcji, PWN, Warsza-
wa 1981.
5. Pietrzak J., Rakowski G., Wrześniowski K.: Macierzowa analiza konstrukcji, PWN, War-
szawa-Poznań 1979.
6. Szmelter J.: Metoda elementów skończonych w mechanice, PWN, Warszawa 1980.
7. Szmelter J.: Metoda elementów skończonych w statyce konstrukcji, Arkady, Warszawa
1979.
8. Szmelter J.: Metody komputerowe w mechanice, PWN, Warszawa 1980.
9. Zienkiewicz O.C.: Metoda elementów skończonych, Arkady, Warszawa 1972.


Wyszukiwarka

Podobne podstrony:
WM lab MES prety
5WM lab MES prety
WM lab MES
WM lab5 MES
lab3 polowienia
Lab3
Wykład14 [MES]
09 mo mes osymetryczny
Hipua lab3 spr
lab3 PMUEM
WdA Lab3 Lukasz Skrodzki
pn10 Matlab lab3 Bubak
lab3 miernictwo

więcej podobnych podstron