PAiR Opracowanie Egzamin Wersja Niepelna by Yanoo


2013-POLSL-MT-MIBM-SEM6-PAIR
Podstawy automatyki i robotyki
Materiały dydaktyczne do egzaminu
Materiały dydaktyczne do egzaminu
Wersja niepełna
Wersja niepełna
1. Pojęcia: sygnał, treść fizyczna sygnału, parametr informacji, zmienna sterowana, zmienna sterująca,
zakłócenie.
1.1. Sygnał  dowolna wielkość fizyczna, za pomocą której są przekazywane informacje.
1.2. Treść fizyczna sygnału  wielkość fizyczna, która jest nośnikiem informacji.
1.3. Parametr informacji  wartość wielkości fizycznej, będącej nośnikiem informacji.
1.4. Zmienna sterowana  wielkość lub warunek, który jest mierzony i sterowany.
1.5. Zmienna sterująca  wielkość lub warunek, który jest zmieniany przez sterownik tak, aby osiągnąć wartość
zmiennej sterowanej.
1.6. Zakłócenie  sygnał, który wywiera niekorzystny wpływ na wartość sygnału wyjściowego układu.
2. Podział układu automatycznej regulacji ze względu na charakter wielkości zadanej:
2.1. Układy regulacji stałowartościowej.
2.2. Układy regulacji programowej.
2.3. Układy regulacji nadążnej.
2.4. Układy regulacji ekstremalnej.
2.5. Układy regulacji adaptacyjnej.
2.6. Układy rozgrywające.
3. Węzeł zaczepowy i węzeł sumacyjny oraz ich możliwe realizacje techniczne.
3.1. Węzeł zaczepowy  rozgałęzienie w torze przepływu sygnału, do którego nie stosuje się reguł dodawania
lub odejmowania. Przykład: zbiornik ciśnieniowy.
1
3.2. Węzeł sumujący  węzeł układu automatyki, utworzony przez człon sumujący, posiadający dwa wejścia i
jedno wyjście, przy czym wielkości wyjściowe nie ulegają zmianie, jedynie dodają się do siebie algebraicznie.
Przykład: mieszek sprężysty.
4. Elementy dynamiczne układów automatyki:
4.1. Proporcjonalny.
4.2. Całkujący idealny.
4.3. Całkujący rzeczywisty.
4.4. Różniczkujący idealny.
4.5. Różniczkujący rzeczywisty.
4.6. Inercyjny pierwszego rzędu.
4.7. Inercyjny drugiego rzędu.
4.8. Oscylacyjny drugiego rzędu.
4.9. Opózniający.
Opracował: Yanoo, grupa 2
2013-POLSL-MT-MIBM-SEM6-PAIR
5. Standardowe wymuszenia stosowane w automatyce:
6. Pojęcie transmitancji operatorowej liniowego stacjonarnego układu dynamicznego i jej związek z
2
przepustowością widmową takiego układu. Postać transmitancji operatorowej liniowego stacjonarnego
układu dynamicznego o dwóch wejściach i dwóch wyjściach.
6.1. Transmitancja operatorowa  stosunek transformaty Laplace a sygnału wyjściowego do transformaty
Laplace a sygnału wejściowego, przy zerowych warunkach początkowych.
=
Rozważając liniowy, niezmienny w czasie układ zdefiniowany przez równanie różniczkowe
+ + ï" + = + + ï" +
Dokonując przekształceń Laplace a
+ + ï" + + = + + ï" + +
Otrzymamy transmitancję operatorową danego układu
"
+ + ï" + +
= = =
+ + ï" + + "
6.2. Transmitancję widmową wyznaczyć można na podstawie transmitancji operatorowej, stosując
podstawienie = | .
6.3. Transmitancja operatorowa liniowego stacjonarnego układu dynamicznego o dwóch wejściach i dwóch
wyjściach:
= +

= =
[ ][ ]
[ ] =
=
Opracował: Yanoo, grupa 2
2013-POLSL-MT-MIBM-SEM6-PAIR
=
7. Analiza widmowa liniowych stacjonarnych układów dynamicznych. Schemat blokowy doświadczalnego
wymuszenia charakterystyki częstotliwości układu dynamicznego.
7.1. Analiza widmowa zajmuje się badaniem układów, na których wejście podano sygnał harmoniczny.
7.2. Schemat blokowy doświadczalnego wymuszenia charakterystyki częstotliwości układu dynamicznego:
Generator Badany układ
funkcji
harmonicznej
Miernik fazy
Õ(É)
Miernik Miernik
amplitudy x0 amplitudy y0
3
8. Różnica pomiędzy regulatorem ciągłego, a nieciągłego działania.
Regulator ciągłego działania wytwarza sygnał nastawczy bez przerwy podczas uchybu regulacji. Regulator
nieciągłego działania wytwarza sygnał nastawczy z przerwami podczas istnienia uchybu regulacji.
9. Pojęcia: charakterystyka statyczna, charakterystyka dynamiczna, charakterystyka dynamiczna
częstotliwościowa.
9.1. Charakterystyka statyczna  funkcja określająca zależność wielkości wyjściowej elementu lub układu od
wielkości wejściowej w stanie ustalonym.
9.2. Charakterystyka dynamiczna (czasowa)  przebieg w czasie odpowiedzi układu dynamicznego na zadane
wymuszenie, najczęściej funkcją Heaviside a.
9.3. Charakterystyka dynamiczna częstotliwościowa  opisuje sygnał wyjściowy układu w zalezności od
amplitudy i częstotliwości sinusoidalnie zmiennego sygnału wejściowego.
10. Bezinercyjny element automatyki: model matematyczny, transmitancja operatorowa, charakterystyka
statyczna, odpowiedz skokowa.
10.1. Model matematyczny:
=
k  współczynnik wzmocnienia
10.2. Transmitancja operatorowa:
=
= =
10.3. Charakterystyka statyczna:
=
Opracował: Yanoo, grupa 2
2013-POLSL-MT-MIBM-SEM6-PAIR
10.4. Odpowiedz skokowa dla wymuszenia u(t)=1(t):
! =
11. Element inercyjny pierwszego rzędu: model matematyczny, transmitancja operatorowa, charakterystyka
statyczna, odpowiedz skokowa, odpowiedz czasowa (interpretacja stałej czasowej, praktyczna wartość
przedziału czasu, po którym uznaje się odpowiedz układu jako ustalonego).
11.1. Model matematyczny:
+ =
k  współczynnik wzmocnienia w stanie ustalonym,
4
T  stała czasowa
11.2. Transmitancja operatorowa:
+ =
+ 1 =
= =
+ 1
11.3. Charakterystyka statyczna:
=
11.4. Odpowiedz skokowa:
=
1
+
! = 1 -
Opracował: Yanoo, grupa 2
2013-POLSL-MT-MIBM-SEM6-PAIR
11.5. Odpowiedz czasowa:
Stan sygnału odpowiedzi w czasie równym T:
= 1 - = 0,632
Nowy stan ustalony yu=0,999kx0 następuje po czasie tu:
0,999 = 1 - = 4,63
W praktyce przyjmuje siÄ™ tu=5T.
12. Transmitancja widmowa liniowego, stacjonarnego układu dynamicznego: definicja, postać
matematyczna, moduł zespolonej funkcji transmitancji widmowej, argument zespolonej funkcji transmitancji
widmowej.
12.1. Transmitancja widmowa liniowego, stacjonarnego układu dynamicznego nazywa się zespolone
wyrażenie w postaci
+
= = =

=
Transmitancja widmowa związana jest z przekształceniem Fouriera, przyporządkowywującym funkcji czasu
5
zespoloną funkcję pulsacji zgodnie z całką Fouriera:
=
12.2. Moduł zespolonej funkcji transmitancji widmowej (dynamiczne współrzędne wzmocnienia amplitudy):
=
12.3. Argument zespolonej funkcji transmitancji widmowej:
= = +
[ ] [ ]
= , =
W przypadku ustalonej wartości częstości wymuszenia, transmitancja widmowa układu reprezentowana jest
przez jeden punkt na płaszczyznie zespolonej o współrzędnych
( ) ( ) ( )
= ; =
( )
( ) + ( ) ; =
= ( ) ( )
( )
13. Transmitancja widmowa elementu z opóznieniem czasowym: postać matematyczna, wykres
charakterystyki amplitudowo-częstościowo-fazowej elementu na płaszczyznie fazowej.
13.1. Postać matematyczna:
( ) - )
= (
13.2. Transmitancja operatorowa i widmowa:
( ) =
( )
= = -
( ) = ; = -
( )
13.3. Moduł przepustowości:
( ) ( + ) =
=
13.4. Argument przepustowości:
( ) = - = -
Opracował: Yanoo, grupa 2
2013-POLSL-MT-MIBM-SEM6-PAIR
13.5. Charakterystyka amplitudowa:
A(É)
k
É
13.6. Charakterystyka fazowa:
Õ(É)
É
13.7. Charakterystyka amplitudowo-fazowa:
6
14. Regulator proporcjonalno-całkowo-różniczkujący (PID): model matematyczny, transmitancja
operatorowa, charakterystyka czasowa przy skokowej zmianie odchyłki regulacji (postać matematyczna i
interpretacja graficzna).
14.1. Model matematyczny:
15. Regulator proporcjonalno-całkowy (PI): model matematyczny, transmitancja operatorowa,
charakterystyka czasowa przy skokowej zmianie odchyłki regulacji (postać matematyczna i interpretacja
graficzna).
16. Równanie różniczkowe opisujące zmianę poziomu cieczy w zbiorniku ze swobodnym wypływem w funkcji
zmian natężenia przepływu cieczy na jego wlocie.
17. Model matematyczny czwórnika RLC.
18. Model matematyczny oscylatora z wymuszeniem dynamicznym.
Opracował: Yanoo, grupa 2


Wyszukiwarka

Podobne podstrony:
PAiR Opracowanie Egzamin by Yanoo
Fizyka opracowanie na egzamin, wersja 2
Opracowanie Teoria?zy?nych 11 Plebs By ITCompozer
TIKKA MASALA wersja domowa by gocha2308
pato opracowanie egzamin
opracowanie egzaminu
Mechanika Ciał Stałych opracowanie egzamin
moje opracowanie egzaminu z metodologii 2014
Pytania egzaminacyjne wersja 2012 2013
Toksykologia Opracowanie egzamin
GI opracowanie egzamin
Marketing Opracowane Pytania Egzaminacyjne 2009 Furtak (46)
DMK egzamin zagadnienia opracowanie
patomorfologia opracowane pytania opisowe egzamin

więcej podobnych podstron