Zad 1 Obliczyć pochodnÄ…: Zad 4 Obliczyć pochodnÄ…: 1 a)f(x) = x3 + e-4 b)f(x) = log2 x + - 6 sin x a)f(x) = xsin x b)f(x) = xx x3 " " 3 x c)f(x) = x - x d)f(x) = 4tgx - 3ctgx c)f(x) = (cos x)sin x d)f(x) = cos x " " x4+x2+ x x+1 x2 3 ln x " " " e)f(x) = f)f(x) = - 2 arcsin x e)f(x) = f)f(x) = ln x x x x earctan x 4 x Zad 2 Obliczyć pochodnÄ… iloczynu i ilorazu: Zadanie 5 Zbadać ciÄ…gÅ‚ość funkcji: Å„Å‚ ôÅ‚ Ä„ òÅ‚ ln x x + 1 x a)f(x) = ln x · cos x b)f(x) = 2 x a)f(x) = ôÅ‚ ół Ä„ Ä„ 3 ln x sin x + x > c)f(x) = d)f(x) = x2 · ex 2 2 arcsin x Å„Å‚ ôÅ‚ e x 1 òÅ‚ arctg x = 0
e)f(x) = f)f(x) = (x3 + ) arctan x x x2-4 x2 b)f(x) = ôÅ‚ ół Ä„ arcsin x 1 x = 0 g)f(x) = h)f(x) = (x3 + )ex 2 ex x2 Å„Å‚ log2 x ôÅ‚ x2+4x+2 " ôÅ‚ i)f(x) = j)f(x) = x3 · e2x gdy |x| = 2
ôÅ‚ x ôÅ‚ x2-4 ôÅ‚ òÅ‚ ex+x lnx+arccos x " k)f(x) = l)f(x) = c)f(x) = 3 4 gdy x = 2 ln(x) x ôÅ‚ ôÅ‚ ôÅ‚ ôÅ‚ log2 x·cos x ôÅ‚ sin x·tanx ół " m)f(x) = n)f(x) = 4 gdy x = -2 xex 2x+ x Å„Å‚ ôÅ‚ x2-2x+1 òÅ‚ x = 1