polarymetr


P O L A R Y M E T R

Cel: Wyznaczenie stężenia roztworów za pomocą polarymetru

Przyrządy: polarymetr, naczynko wagowe.

Wprowadzenie teoretyczne

Światło są to fale elektromagnetyczne o określonych długościach. Fala elektromagnetyczna polega na rozchodzeniu się w przestrzeni okresowo zmiennych pól: elektrycznego o natężeniu E i magnetycznego o natężeniu H. Wektory E i H są zawsze prostopadłe do siebie i do kierunku rozchodzenia się fali, czyli do wektora prędkości światła v. (rys.1). Wektor natężenia pola elektrycznego E, którego drgania wywołują wrażenia świetlne, nazwano wektorem świetlnym. Płaszczyznę wyznaczoną przez kierunek rozchodzenia się fali i kierunek drgań wektora świetlnego nazywa się płaszczyzną drgań wektora świetlnego.

Światło pochodzące od Słońca lub innego źródła światła, np. rozżarzonego ciała, jest niespolaryzowane, tzn. drgania wektora świetlnego odbywają się prostopadle do kierunku rozchodzenia się światła, ale we wszystkich możliwych płaszczyznach, w których ten kierunek leży. Inaczej mówiąc, w świetle niespolaryzowanym wektor świetlny ma wiele płaszczyzn drgań (rys.2).

rys.1 rys.2

Światło, w którym wektor świetlny E ma jedną płaszczyznę drgań jest światłem spolaryzowanym liniowo (rys.3). Należy pamiętać, że zawsze wektorowi E towarzyszy prostopadły do niego wektor H, chociaż nie mówi się o nim dla prostoty rozważań.

Jeśli koniec wektora świetlnego E obraca się wokół kierunku promienia nie zmieniając swojej długości, światło takie jest spolaryzowane kołowo. Gdy zaś koniec wektora opisuje elipsę - światło jest spolaryzowane eliptycznie. W przypadku, kiedy drgania wektora świetlnego odbywają się w wielu płaszczyznach, tak jak w świetle niespolaryzowanym, ale amplituda drgań jest różna, mówimy o świetle częściowo spolaryzowanym (rys.4).

rys.3 rys.4

Światło liniowo spolaryzowane otrzymuje się poprzez:

a). podwójne załamanie,

b). odbicie od dielektryka,

c). wielokrotne załamanie w dielektryku,

d). dichroizm.

Ad. a) Podwójne załamanie światła występuje w ośrodkach anizotropowych optycznie. Przy przejściu światła przez taki ośrodek np. kryształ (z wyjątkiem kryształów należących do układu regularnego takich jak NaCl) powstają dwa promienie załamane, stąd nazwa zjawiska. Kryształy, w których zachodzi zjawisko podwójnego załamania nazywa się kryształami dwójłomnymi.

Po przejściu światła przez kryształ dwójłomny otrzymuje się dwa promienie załamane (rys.5). Jeden - leżący w tej samej płaszczyźnie co promień padający i prosta prostopadła do powierzchni kryształu w punkcie padania - ma stały współczynnik załamania niezależnie od kąta padania (tzn. ma stałą prędkość w krysztale niezależnie od kierunku). Podlega on zwykłym prawom załamania i przyjęto go nazywać promieniem zwyczajnym. Drugi promień - nadzwyczajny - na ogół nie leży w płaszczyźnie padania. Jego współczynnik załamania i prędkość nie mają stałej wartości, a zależą od kierunku rozchodzenia się promienia w krysztale (rys.5). Oba promienie są spolaryzowane w płaszczyznach wzajemnie prostopadłych i mają różną prędkość rozchodzenia się w krysztale. W kryształach dwójłomnych istnieje taki kierunek, w którym przechodząca wiązka światła nie ulega rozdwojeniu. Jest to kierunek osi optycznej i kierunki do niej równoległe. Gdy w krysztale istnieje tylko jedna oś optyczna, kryształ nazwany jest jednoosiowym (lód, kwarc, szpat islandzki).

Rys.5.

Ad. b) Liniową polaryzację światła można uzyskać stosując odbicie od przezroczystych dielektryków. Jeżeli promień światła niespolaryzowanego pada na powierzchnię rozgraniczającą dwa ośrodki przezroczyste np. powietrze i szkło, wówczas i promień odbity i załamany są częściowo spolaryzowane. W promieniu odbitym przeważają drgania wektora E prostopadłe do płaszczyzny padania, w promieniu załamanym - leżące w płaszczyźnie padania (rys.6). Płaszczyzna padania jest to płaszczyzna, w której leży promień padający i prosta prostopadła do powierzchni rozgraniczającej ośrodki wystawiona w punkcie padania promienia. Brewster wykazał, że jeśli promień odbity i załamany tworzą kąt 90o, to promień odbity jest całkowicie liniowo spolaryzowany (rys.7).

rys.6 rys.7

0x08 graphic
Stosując prawa odbicia i załamania światła można podać prawo Brewstera w innej postaci:

Kąt padania B przy którym promień odbity jest całkowicie liniowo spolaryzowany nazwany jest kątem Brewstera lub kątem całkowitej polaryzacji. Drgania wektora E w promieniu odbitym odbywają się prostopadle do płaszczyzny padania. Promień załamany z przewagą drgań w płaszczyźnie padania jest spolaryzowany częściowo.

W przypadku padania światła pod kątem całkowitej polaryzacji odbita wiązka światła jest całkowicie spolaryzowana, ale zawiera jedynie 8% całkowitej energii wiązki padającej. Resztę energii posiada częściowo spolaryzowana wiązka załamana.

Ad. c) Polaryzacja przez wielokrotne załamanie w dielektryku polega na przepuszczeniu promienia załamanego przez szereg równoległych płytek z dielektryka np. szklanych. (rys.8)

rys.8

Po przejściu przez każdą kolejną płytkę w promieniu załamanym będzie coraz mniej drgań prostopadłych do płaszczyzny padania, a więc będzie on coraz bardziej spolaryzowany. Praktycznie, kilkanaście płytek dielektryka na które rzucono światło naturalne pod kątem Brewstera przepuszcza światło całkowicie liniowo spolaryzowane o drganiach wektora E w płaszczyźnie padania. Natężenie tego światła jest znacznie większe od natężenia światła odbitego, również całkowicie spolaryzowanego, lecz o drganiach wektora E prostopadłych do płaszczyzny padania.

Ad. d) Dichroizm. Po przejściu światła przez kryształ dwójłomny otrzymuje się dwie wiązki spolaryzowane, o drganiach prostopadłych do siebie, lecz pokrywające się. Aby otrzymać światło o jednym kierunku drgań należy jedną z wiązek wyeliminować. W sposób naturalny eliminacja ta następuje w kryształach wykazujących zjawisko dichroizmu. Zjawisko to polega na niejednakowym pochłanianiu promienia zwyczajnego i nadzwyczajnego przez dany kryształ dwójłomny. Można tak dobrać grubość kryształu, że po jego przejściu jeden z promieni ulega całkowitemu pochłonięciu, a wychodzi pozostały promień o mniejszym natężeniu, ale całkowicie spolaryzowany liniowo. Zjawisko dichroizmu zachodzi m.in. w turmalinie i herapatycie.

Specjalnym układem służącym do eliminacji jednego ze spolaryzowanych promieni w dwójłomnym krysztale szpatu islandzkiego jest pryzmat Nicola (nikol).Szpat islandzki (kalcyt CaCO3) ma naturalne płaszczyzny łupliwości, pozwalające wydzielić z kryształów charakterystyczne rombościany. Rombościan kryształu przecina się wzdłuż płaszczyzny "bc" (rys.9) i skleja balsamem kanadyjskim (o współczynniku załamania 1,549). Promień świetlny padający na nikol równolegle do krawędzi "bd" rozdziela się na promień zwyczajny (zw) o współczynniku załamania w szpacie 1,66 oraz na promień nadzwyczajny (nzw) o współczynniku załamania 1,49. Promień zwyczajny pada na powierzchnię szpat - balsam pod kątem większym od granicznego, a trafiając na ośrodek optycznie rzadszy ( o mniejszym współczynniku załamania - balsam kanadyjski) ulega całkowitemu wewnętrznemu odbiciu i zostaje pochłonięty przez zaczernione ścianki nikola.

rys.9

Promień nadzwyczajny przechodzi przez balsam (optycznie gęstszy) i wychodzi z nikola nieco osłabiony i spolaryzowany liniowo. Gdy ustawi się dwa identyczne nikole tak, aby światło spolaryzowane padało z jednego na drugi, wówczas obracając drugim nikolem obserwuje się pojawianie i zanikanie jasnej plamki na ekranie. Jeżeli oba nikole ustawione są tak, aby ich płaszczyzny przecięcia głównego "bc" były równoległe do siebie, światło spolaryzowane przechodzi przez drugi pryzmat (rys.10).

rys.10

Jeżeli natomiast nikole ustawione są tak, że płaszczyzny przecięcia głównego są prostopadłe (nikole skrzyżowane), światło nie przechodzi przez drugi nikol (rys.11). Pierwszy nikol, polaryzujący światło, nazwany jest polaryzatorem, drugi - identyczny, lecz o innej funkcji - analizatorem. Układ dwóch nikoli - polaryzatora i analizatora - jest podstawą polarymetru , przyrządu do pomiaru kąta skręcenia płaszczyzny polaryzacji.

Skręcenie płaszczyzny polaryzacji światła liniowo spolaryzowanego występuje przy przejściu tego światła przez niektóre kryształy i roztwory tzw. substancji optycznie czynnych ( cukier, terpentyna, nikotyna). W przypadku roztworów kąt skręcenia jest proporcjonalny do długości l warstwy roztworu oraz do jego stężenia a. Zależność tę wyraża wzór:

= k a l

gdzie: k jest współczynnikiem proporcjonalności zależnym od rodzaju rozpuszczonej substancji i rozpuszczalnika oraz od długości fali światła.

Zasada działania polarymetru polega na obrocie analizatora o taki kąt, o jaki skręciła płaszczyznę polaryzacji substancja optycznie czynna wprowadzona pomiędzy nikole.

Światło monochromatyczne, odpowiadające długości fali linii „D” światła sodowego, przechodzi przez soczewkę kolimatora i jako wiązka równoległa trafia na polaryzator. Światło spolaryzowane przechodzi przez rurkę zawierającą roztwór substancji optycznie czynnej do analizatora sprzężonego z kątomierzem z noniuszem. Dwie lupki zamontowane przy okularze ułatwiają odczyt z dokładnością do 0,05 stopnia.

Pole widzenia w polarymetrze podzielone jest na trzy części, które w zależności od położenia analizatora mają różny stopień zaciemnienia (rys.12).

rys.12

Należy tak ustawić analizator, aby pole widzenia było jednolite, możliwie najciemniejsze. Kąt odczytany na kątomierzu jest zerem polarymetru. Po wstawieniu do polarymetru rurki z roztworem obraz zmienia się, ponieważ roztwór spowodował skręcenie płaszczyzny polaryzacji. Pokręcając tarczą obrotową doprowadza się pole widzenia do znów jednolitego zaciemnienia trzech części pola widzenia. Różnica między kątem odczytanym w tym położeniu, a zerem polarymetru jest równa kątowi skręcenia . Znając ten kąt oraz k i l, można obliczyć koncentrację roztworu, a znając objętość roztworu - masę substancji rozpuszczonej.

Wykonanie ćwiczenia

  1. Wstawić pustą rurkę "R" między polaryzator i analizator (rys.13). Obracając analizatorem doprowadzić trzy części pola widzenia do jednakowej szarości. Przy pomocy lupki "S" odczytać kąt zerowy polarymetru 1. Pomiar przeprowadzić trzykrotnie, wyniki wpisać do tabelki.

  2. Obliczyć średnią wartość zera polarymetru.

  3. Przygotować wodny roztwór cukru w kolbce miarowej o określonej objętości V.

  4. Przygotowany roztwór cukru nalać do rurki "R", uważając, aby przy nakładaniu szkiełka nie powstały w roztworze pęcherzyki powietrza.

  5. Napełnioną rurkę wstawić między polaryzator i analizator, a następnie obracając analizatorem odczytać kąt 2 , przy którym trzy części pola widzenia są jednakowo szare. Pomiar kąta 2 przeprowadzić trzykrotnie. Wyniki wpisać do tabelki.

  6. Obliczyć średnią wartość kąta 2.

  7. Obliczyć kąt skręcenia , koncentrację roztworu "a", oraz masę cukru "m" użytego do wykonania roztworu.

  8. Przeprowadzić dyskusję błędu, jaki popełniany jest przy obliczaniu masy cukru "m". Wielkości V, k , l są stałe.

Uwaga! kąty 1 i 2 odczytywać z dokładnością do 0,05o.

Tabela.

Nazwa

Zero

Kąt

V

l

a

M.

roztworu

polarym.

α1

α1 śr

odczytany

α2

α2 śr

Δα

[cm3]

[cm]

[g/cm3]

[g]

Zagadnienia

Światło jako fala elektromagnetyczna. Światło niespolaryzowane, spolaryzowane częściowo, liniowo, kołowo i eliptycznie. Metody uzyskiwania światła liniowo spolaryzowanego. Konstrukcja pryzmatu Nicola. Skręcenie płaszczyzny polaryzacji. Budowa i działanie polarymetru.

Literatura

  1. M.Skorko : Fizyka. PWN Warszawa 1976. Par. 24.12 - 24.14.

  2. T.Dryński: Ćwiczenia laboratoryjne z fizyki. PWN. Warszawa 1976. Par.50.

  3. H.Szydłowski: Pracownia fizyczna. PWN. Warszawa 1973. Par.29.01, par.29.1.

0x01 graphic



Wyszukiwarka

Podobne podstrony:
Polaryzacja światła
pwsz ioś kalisz Ćw. 6 POLARYMETRIA, inżynieria ochrony środowiska kalisz, a pwsz kalisz ioś, analiza
Polaryzacja kołowa i eliptyczna xD
35 Fale elektromagnetyczne i ich polaryzacja
przełącznik polaryzacji
konspekt 10 polaryzacja
Polarymetryczne oznaczanie zawartości skrobi, Tż, Analiza żywności II, Sprawozdania
Cwiczenie2 1 polarymentr, fiza laborki
Badanie polaryzacji światła i efektów optycznych
Polarymetr Laurenta, AGH, agh, programinski, Laborki, Laborki, Lab, FIZYKA - Laboratorium, Polarymet
m9 polarymetr id 275380 Nieznany
pwsz ioś kalisz polarymetria, inżynieria ochrony środowiska kalisz, a pwsz kalisz ioś, analiza chemi
polarymetria+mutarotacja, materiały farmacja, Materiały 4 rok, farmacja 4 rok part 1, bromatologia
84 87 Polaryzacja WE i WB
sprawozdanie e4 polaryzacja mikrofal 1
e4 3 polaryzacja mikrofal
polaryzacja, refrakcja
glukoza polarymetria
Laboratorium Pomiar kąta skręcenia polaryzacji światła w roztworze cukru

więcej podobnych podstron