ściąga sklepana final


  1. Statyka, Pojęcie siły, Prawa statyki

Statyka jest szczególnym przypadkiem dynamiki polegającym za tym, że siły działające na ciało materialne znajdują się w równowadze, co oznacza, że ciało jest w spoczynku lub porusza się ruchem jednostajnym prostoliniowym

Prawa statyki

Układ sił - wzajemne oddziaływanie więcej niż dwóch brył

2.Układy sił. Wielobok sił - konstrukcja

Układ sił wzajemne oddziaływanie więcej niż dwóch sił

Działanie siły nie zmieni się jeżeli przesuniemy siłę wzdłuż prostej jej działania

0x01 graphic

tu ma być rysunek

3.Dwie siły równoległe. Wypadkowa dwóch sił równoległych o wartościach równych zgodnie skierowanych oraz o różnych wartościach przeciwnie skierowanych.

Układ sił - wzajemnie oddziaływanie więcej niż dwóch brył.

Wielobok sił.

Działanie siły na ciała sztywne nie ulegają zmianie jeżeli przesunie się siłę wzdłuż jej prostej działania do innego punktu położenia

W= 0x01 graphic
0x01 graphic

Rozkład sił na dwa kierunki 0x01 graphic

rozkład sił na trzy kierunki

Można go przeprowadzić tylko wówczas, gdy trzy kierunki na które rozkładamy siłę nie są do siebie równoległe i nie przecinają się w jednym punkcie.

0x01 graphic

0x01 graphic

Siły przyłożone do brył lub punktów materialnych możemy podzielić na siły zewnętrzne i wewnętrzne. Siły zewnętrzne są to siły przyłożone do poszczególnych brył pochodzące od brył nie wchodzących w skład rozpatrywanego układu.

Drugą grupą sił są siły pochodzące od więzów w przypadku gdy bryła jest nieswobodna. Siły te nazywamy siłami reakcji.

Siły wewnętrzne to siły, z jakimi oddziaływują na siebie poszczególne bryły lub punkty materialne wchodzące w skład danego układu, wzajemne oddziaływanie brył określa III prawo Newtona.

Środkowy układ sił - układ sił, w którym proste działania przecinają się w jednym punkcie. Taki układ można zastąpić jedną siłą, którą nazywamy wypadkową tego układu, sprowadzić do dwójki zerowej (układ jest w równowadze).

Jeżeli wielobok sił (suma geometryczna) jest zamknięty to układ środkowy pozostaje w równowadze. Jeżeli wielobok sił jest otwarty to układ środkowy ma wypadkową . Wektor główny (0x01 graphic
) to wektor zamykający wielobok sił.

Trzy siły są w równowadze, jeżeli ich proste działania przecinają się w jednym punkcie, leżą w jednej płaszczyźnie i trójkąt sił jest trójkątem zamknięty. 0x01 graphic

Aby układ znajdował się w równowadze

0x01 graphic
0x01 graphic
0x01 graphic

Warunkiem koniecznym i wystarczającym równowagi przestrzennego środkowego układu sił jest, aby algebraiczne sumy rzutów wszystkich sił na osie układu współrzędnych były równe zero

4.Pojęcie pary sił, Wektor i moment pary sił, Umowa znaków

Para sił - dwie siły równe co do wartości, równoległe leżące w jednej płaszczyźnie, skierowane przeciwnie

Moment pary sił to wektor prostopadły do działania pary sił jest niezależny od wyboru punktu, jest wielkością stałą, a jego wartość równa się iloczynowi wartości jednej z sił pary i odległości między siłami

Tw1. Działanie pary sił na ciało sztywne nie ulegnie zmianie gdy parę przeniesiemy w dowolne położenie w płaszczyźnie jej działania

Tw2. Działanie pary sił na ciało sztywne nie ulegnie zmianie gdy zmienimy siły pary i ramię tak aby wektor momentu został niezmieniony

Tw3. Działanie pary sił na ciało sztywne nie ulegnie zmianie gdy parę przesuniemy na płaszczyznę równoległą do jej płaszczyzny działania.

5.Pojęcie momentu sił względem punktu i prostej (osi)

Moment siły względem punktu - nazywamy odłożony z punktu O wektor Mo równy iloczynowi wektorowemu promienia wektora R
i wektora siły Mo = R x P

Moment siły względem osi - rzut wektora momentu siły względem dowolnego punktu osi na tę oś.

6.Pojęcie równowagi ciała

Warunek równowagi ciała, punktu materialnego lub układu punktów materialnych znajdują się w równowadze jeżeli działające na nie siły równoważą się

7.Płaski dowolny układ sił, Redukcja sił, Moment główny, Wektor główny, Wyrażenia analityczne

Płaski dowolny układ sił - redukcja, w przypadku, gdy suma geometryczna układu sił P1 i P2 ... Pn działających w jednej płaszczyźnie na ciało sztywne różna jest od zera, układ możemy zastąpić jedną siłą wypadkową, równą wektorowi głównemu R, a jeżeli jest równa zero, to układ sił może, ale nie musi redukować się do pary sił, której wektor jest prostopadły do płaszczyzny działania sił gdy Wg i Mg ≠ 0 skrętnik; Wg ≠ 0, Mg = 0 wektor gł. Wg = 0, Mg ≠ 0 para sił;

Wektor główny R przesuwając równolegle wszystkie siły danego układu do jednego punktu O otrzymamy jedną siłę R równą sumie geometrycznej.

Moment główny Mo - jedna para sił o momencie Mo równym sumie momentów tych par sił (względem obranego bieguna jest równy sumie geometrycznej momentu głównego tego układu względem pierwotnego bieguna.

8. Płaski równoległy układ sił, Redukcja, Warunki równowagi

Warunki równowagi płaskiego równoległego układu sił - pierwsze z równań równowagi jest spełnione tożsamościowo i i pozostałe dwa równania równowagi

ΣPi = ΣPy = 0, ΣMi0=0, ΣMiA=0, ΣMiB=0, Mo = ΣMi0=ΣPi Xi

9.Przestrzenny dowolny układ sił, Redukcja, Warunki równowagi

Redukcja dowolnego przestrzennego układu sił - układ możemy zastąpić siłą R przyłożoną do dowolnego wybranego środka redukcji O, równą sumie geometrycznej wszystkich sił układu oraz pary sił o momencie Mo równym sumie geometrycznej momentów tych sił względem środka redukcji.

Skrętnik - układ złożony z wektora głównego R, składowej momentu głównego Mo leżącego na linii działania wektora R.

Redukcja do dwóch sił skośnych, z których jedna przechodzi przez środek redukcji O

Redukcja do siły wypadkowej - warunkiem jest istnienie różnej od zera sumy geometrycznej R, prostopadłość wektora momentu głównego Mo względem dowolnie wybranego punktu O do linii działania sumy geometrycznej.

Redukcja do pary sił - gdy wektor główny równa się zeru natomiast moment główny Mo względem dowolnego punktu o nie jest równy zero, moment jest równy momentowi głównemu układu.

Warunki równowagi - jeżeli suma geometryczna R jest równa zero oraz moment główny Mo układu względem dowolnego punktu O jest równy zero - jeżeli suma rzutów wszystkich sił na trzy osie układu równa jest zero i suma momentów wszystkich sił względem trzech osi układu jest równa zeru.

10. Tarcie, Tarcie statyczne i kinematyczne, Tarcie poślizgowe i tarcie toczne

Tarcie - zjawisko powstawania sił stycznych do powierzchni styku dwóch ciał.

Tarcie statyczne zależy od rodzaju materiału trących się ciał, chropowatości i stanu ich powierzchni (suche, wilgotne, zimne, gorące) tarcie kinematyczne zależy od względnej prędkości ciała.

Stożek tarcia - tarcie nie zależy od kierunku działania siły T, wobec tego reakcja R może leżeć w każdej z płaszczyzn przechodzących przez normalną Or i odchylać się od tej normalnej o kąt tarcia φ.

11. Kinematyka, Pojęcie ruchu, Tor, Sposób opisu ruchu bryły oraz punktu materialnego

Torem lub trajektorią punktu nazywamy miejsce geometryczne kolejnych położeń tego punktu w przestrzeni.

Opis ruch:

- za pomocą wektora promienia wodzącego 0x01 graphic
0x01 graphic

12.Równania ruchu punktu, Wyznaczenie prędkości i przyspieszenia przy opisie ruchu za pomocą równania wektorowego we współrzędnych prostokątnych

0x01 graphic
0x01 graphic

13.Współrzędne naturalne, wektor krzywizny, trójścian Freneta, Rozkłąd przyspieszenia na kierunki naturalne

0x01 graphic
- przyspieszenie całkowite 0x01 graphic
- przyspieszenie styczne

0x01 graphic
- przyspieszenie normalne 0x01 graphic
- promień

14.Ruch punktu po okręgu

0x01 graphic
- droga 0x01 graphic
-prędkość[m/s] 0x01 graphic
- przyspieszenie styczne

0x01 graphic
- przyspieszenie normalne 0x01 graphic
[s-1] 0x01 graphic
-prędkość kątowa

0x01 graphic
przyspieszenie kątowe

15.Klasyfikacja ruchu punktu z uwagi na tor prędkość i przyspieszenie

-punkt porusza się po linii prostej ; x= x(t)

V i a leżą na tej samej prostej wystarczy podać ich miary Vx i ax względem tej osi

0x01 graphic
0x01 graphic

0x01 graphic
- stałą dowolna

-punkt porusza się ruchem jednostajnie przyspieszonym ze stałym przyspieszeniem ruch po prostej

0x01 graphic

-punkt porusza się ruchem krzywoliniowym ze stałym przyspieszeniem

0x01 graphic

16Geometria mas, Momenty masowe, Środek masy ciała, Momenty statyczne

x = x1w1 + x2w2 + x3w3 +...

w = w1 + w2 + w3 +...

Jeżeli każdy ciężar wyrazimy w postaci w = mg, g ulegnie uproszczeniu i zależy wtedy nie od ciężaru ale od masy i nazywane jest środkiem masy.

Nie ma różnicy pomiędzy położeniem środka masy i środka ciężkości o ile g ma ten sam kierunek i wartość dla każdego ciężaru.

Moment bezwładności - wielkość fizyczna charakteryzująca rozkład masy ciała; może być określany względem punktu lub osi; masowej moment bezwładności układu punktów materialnych (bryły) względem osi z określa się wzorem;

I = 0x01 graphic
- odległość od osi m - masa i-tego punktu materialnego

Dla każdego ciała obracającego się wokół stałej osi wypadkowy moment siły równy jest iloczynowi momentu bezwładności tego ciała
i przyspieszenia kątowego.

Krążek; 0x01 graphic
pręt 0x01 graphic

walec; 0x01 graphic
kula 0x01 graphic

Dla ciał nieregularnych tj. kość czy piramidę, konieczne jest doświadczalne wyznaczenie momentu bezwładności.

Także eksperymentalne wyniki są często wyrażane przez podanie masy m i promienia bezwładności

I = mk2 => k =0x01 graphic

17.Momenty masowe drugiego stopnia, Momenty bezwładności, momenty dewiacji, Tw. Steinera Promienie bezwładności

Tw. Steinera

Momenty bezwładności masy ciała względem osi dowolnej równa się momentowi bezwładności względem osi równoległej do niej i przechodzącej przez środek ciężkości powiększonemu o iloczyn całej masy przez kwadrat odległości między osiami

Aksjomat 1. Siła działająca na bryłę sztywną jest wektorem związanym z prostą.

Aksjomat 2. Do każdego układu sił działających na bryłę sztywną można dodać lub odjąć układ sił

zrównoważonych, nie zmieniając stanu ruchowego bryły.

Aksjomat 3. Nie naruszając równowagi bryły sztywnej możemy punkt zaczepienia siły przenieść

dowolnie wzdłuż prostej działania tej siły.

Aksjomat 4. Moduł i prostą działania siły wypadkowej dwóch sił nierównoległych działających na ciało sztywne określa przekątna równoległoboku zbudowanego na wektorach sił składowych.

Aksjomat 5. Wypadkowa dwóch sił mających te same proste działania i zwroty, ma wartość równą

sumie wartości sił składowych i jest zwrócona w tę samą stronę, co siły składowe.

Aksjomat 6. Wypadkowa dwóch sił mających takie same proste działania, a przeciwne zwroty, jest równa różnicy ich wartości, a zwrot jej jest taki jak większej siły składowej. W szczególności, jeśli obie siły mają jednakowe wartości i proste działania, a przeciwne zwroty, ich siła wypadkowa jest równa zeru.

Aksjomat 7. Dowolna siła działająca na bryłę sztywną może być zastąpiona układem sił zaczepionych w punkcie przyłożenia siły.

Aksjomat 8. Jeżeli ciało I działa na ciało II siłą P, to ciało II oddziałuje na ciało I taką samą co do modułu i kierunku siłą -P zwróconą przeciwnie.

Aksjomat 9. Każde ciało nieswobodne możemy uważać za swobodne, jeżeli zamiast więzów

przyłożymy do niego reakcje wywołane przez te więzy.

TWIERDZENIE O 3 SIŁACH:

Trzy siły są w równowadze, jeżeli ich proste działania przecinają się w jednym punkcie, leżą w jednej płaszczyźnie i trójkąt sił jest trójkątem zamkniętym.

Zbieżny układ sił (płaski lub przestrzenny). Jest to układ, w którym proste działania sił przecinają

się w jednym punkcie. Taki układ sił można zastąpić jedną siłą wypadkową.

Dowolny układ sił (płaski lub przestrzenny). Jest to układ, w którym proste działania sił są

dowolnie położone względem siebie tzn. nie przecinają się w jednym punkcie. Taki układ sił

można zastąpić jedną siłą wypadkową i wypadkowym momentem siły.

SKŁADANIE SIŁ RÓWNOLEGŁYCH:

●Siła wypadkowa dwóch sił równoległych o zgodnych zwrotach jest równa sumie wartości sił

składowych, jest do nich równoległa, ma ten sam zwrot, a jej prosta działania przechodzi między

siłami składowymi, dzieląc odcinek między nimi w stosunku odwrotnie proporcjonalnym do wartości

tych sił.

●Siła wypadkowa dwóch sił równoległych o przeciwnych zwrotach i różnych wartościach liczbowych, jest równa różnicy wartości tych sił, jest do nich równoległa, ma zwrot zgodny ze zwrotem siły większej, jej prosta działania przechodzi na zewnątrz siły większej i dzieli odcinek między siłami zewnętrznie w stosunku odwrotnie proporcjonalnym do wartości tych sił.

TWIERDZENIA O PARACH SIŁ:

Działanie pary sił na ciało sztywne nie ulegnie zmianie, gdy parę przesuniemy w dowolne położenie w jej płaszczyźnie działania.

●Działanie pary sił na ciało sztywne nie ulegnie zmianie, gdy zmienimy siły pary i jej ramię tak, aby wektor momentu pary został niezmieniony.

●Działanie pary sił na ciało sztywne nie ulegnie zmianie, gdy parę sił przesuniemy na płaszczyznę

równoległą do jej płaszczyzny działania.

Działanie pary sił na ciało sztywne nie ulegnie zmianie, jeżeli moment pary się nie zmieni.

SKŁADANIE PAR SIŁ W 1 PŁASZCZYŹNIE:

●Aby pary sił działające w jednej płaszczyźnie na ciało sztywne znajdowały się w równowadze, suma

momentów tych par musi się równać zeru, czyli: ∑Mi=0

Warunki równowagi płaskiego dowolnego układu sił: Warunkiem koniecznym i dostatecznym równowagi płaskiego dowolnego układu sił jest, aby sumy algebraiczne rzutów wszystkich sił na każdą z dwóch nierównoległych osi równały się zeru i suma momentów wszystkich sił względem dowolnie obranego bieguna na płaszczyźnie działania tych sił była równa zeru (trzy równania równowagi).

∑Fix=0, ∑Fiy=0, ∑Mo=0

Warunki równowagi przestrzennego dowolnego układu sił: Warunkiem koniecznym i dostatecznym równowagi przestrzennego dowolnego układu sił jest, aby algebraiczne sumy rzutów wszystkich sił na trzy osie prostokątnego układu odniesienia były równe zeru oraz aby algebraiczne sumy momentów wszystkich sił względem tych trzech osi były równe zeru.

∑Fix=0, ∑Fiy=0, ∑Fiz=0, ∑Mix=0, ∑Miy=0, ∑Miz=0

PRAWA TARCIA:

●Siła tarcia jest niezależna od wielkości powierzchni stykających się ze sobą ciał i zależy jedynie od ich rodzaju

●Wartość siły tarcia dla ciała znajdującego się w spoczynku może zmienić się od zera do granicznej

wartości, proporcjonalnej do całkowitego nacisku normalnego

●W przypadku, gdy ciało ślizga się po pewnej powierzchni, siła tarcia jest zawsze skierowana

przeciwnie do kierunku ruchu i jest mniejsza od granicznej wartości.

0x08 graphic
TARCIE TOCZNE

Pr /G=f/R Wielkość f mierzymy w jednostkach

długości i nazywamy ramieniem oporu toczenia.

0x08 graphic

TARCIE STATYCZNE

T= μ∙N

0x08 graphic

STOŻEK TARCIA

Kąt ρ utworzony przez reakcję Rmax z normalną

(największy z możliwych kątów wychylenia)

nazywa się kątem tarcia. Tangens kąta tarcia jest

równy współczynnikowi tarcia statycznego:

tgρ=μ

MOM SIŁY WZGLĘDEM PKT Mom siły względem pkt jest iloczynem wektorowym, wektora ramienia r i siły P. 0x01 graphic
Dł takiego wektora jest równa. 0x01 graphic
Mom siły względem pkt jest równy sumie geometrycznej momów względem 3 osi prostopadłych przecinających się w tym pkt. MOM SIŁY WZGLĘDEM PROSTEJ Mom siły względem prostej jest równy mom rzutu tej siły na płaszczyznę prostopadłą do prostej względem pkt przebicia tej prostej z tą prostopadłą płaszczyzną. Siły równoległe oraz przecinające daną oś nie dają mom względem tej osi. UWAGI WZGLĘDEM MOM Mom sił względem pkt jest wektorem zastępczym w punkcie. Mom siły względem osi jest wektorem ślizgającym się (przesuwa się wzdłuż osi). Mom pary sił jest wektorem swobodnym. OPÓR TOCZENIA Swobodnie toczące się koło zwalnia, a następnie zatrzymuje się. Dzieje się tak w skutek działania siły oporu toczenia, jaka powstaje w wyniku oddziaływań podłoża, a konkretnie w wyniku niewielkich odkształceń koła i tego podłoża. Odkształcenia te powodują, że składowa nacisku N siły oddziaływania podłoża jest przesunięta o wlk f w stosunku do siły ciężkości G. ŚR CIĘŻKOŚCI I ŚR MASY Rozpatrujemy ukł n z pkt mat o masach 0x01 graphic
skupionych w pkt 0x01 graphic
. Siły ciężkości 0x01 graphic
przyłożone w pkt 0x01 graphic
równe są iloczynowi masy przez przyspieszenie ziemskie dla i-tej masy 0x01 graphic
. Siły ciężkości 0x01 graphic
są skierowane do śr masy kuli ziemskiej biorąc pod uwagę, że stosunek największych wymiarów ciał znajdujących się na Ziemi w odniesieniu do promienia Ziemi jest bardzo mały to przyjmuje się, że ukł sił ciężkości 0x01 graphic
jest równoległy. Śr ciężkości ukł pkt mat jest pkt C przyłożenia wypadkowej sił ciężkości, którego współrzędne wyrażone są przez wzory: 0x01 graphic
,0x01 graphic
,0x01 graphic
,0x01 graphic
, xi,yi,zi-współrzędne i-tej masy, G-suma sił ciężkości wszystkich mas. Położenie śr ciężkości ciała mat o ciągłym rozłożeniu masy wyrażają następujące wzory: 0x01 graphic
,0x01 graphic
,0x01 graphic
. Ze względu na to, że jednorodnym polu ciężkości ciężar jest równy iloczynowi masy i przyspieszenia ziemskiego to możemy napisać, że: 0x01 graphic
,0x01 graphic
, gdzie dm jest masą elementu ciała, m to masa całego ciała, g to przyspieszenie ziemskie: 0x01 graphic
,0x01 graphic
,0x01 graphic
. W jednorodnym polu ciężkości śr masy pokrywa się ze śr ciężkości. Dla ciał jednorodnych zarówno gęstość jak i ciężar właściwy to wlk stałe: 0x01 graphic
,0x01 graphic
, V-objętość ciała, γ-ciężar właściwy: 0x01 graphic
,0x01 graphic
,0x01 graphic
. ŚR CIĘŻKOŚCI FIGUR PŁASKICH Jeżeli ciałem jest ciężka płyta o stałej grubości a, to może być uważane za ciało płaskie o masie równomiernie rozłożonej na jego powierzchni w takim przypadku: 0x01 graphic
,0x01 graphic
,0x01 graphic
,0x01 graphic
. Śr masy ciał płaskich leży w płaszczyźnie tych ciał. ŚR CIĘŻKOŚCI LINII Jeżeli mamy ciało, które z dostateczną dokładnością może być uważane za jednorodną linię np. drut o stałym polu przekroju A, to dla takiego drutu: 0x01 graphic
,0x01 graphic
,0x01 graphic
,0x01 graphic
. Śr masy ciężkości może znajdować się wew objętości tego ciała lub na zew.

PRĘDKOŚĆ PKT-WYPROWADZENIE NA PODSTAWIE RÓWNANIA DROGI W chwili t droga przebyta przez punkt A wynosi S(t). Po upływie czasu ∆t, czyli w chwili t+∆t pkt A znajduje się w położeniu A1. Wektor 0x01 graphic
skierowany wzdłuż cięciwy A-A1 zgodnie z kierunkiem ruchu pkt ma wartość 0x01 graphic
, jest to prędkość śr pkt-iloraz drogi do czasu, w którym ta droga została przebyta. Wraz ze zmniejszeniem się ∆t kierunek wektora 0x01 graphic
zbliży się do kierunku stycznej do toru w pkt A. Prędkość 0x01 graphic
pkt A nazywamy wektorem, którego wartość bezwzględna równa jest pochodnej drogi względem czasu. Wektor 0x01 graphic
skierowany jest wzdłuż stycznej do toru rozpatrywanego pkt: 0x01 graphic
PRĘDKOŚĆ PKT JAKO POCHODNA PROMIENIA WEKTORA W tym przypadku kolejne położenia pkt określonych za pomocą promieni wektora. Prędkość chwilowa 0x01 graphic
. Prędkość pkt jest I pochodną wektora względem czasu. Współrzędne prędkości pkt są równe pochodnym względem czasu odpowiednich współrzędnych tego pkt. Znając Vx,Vy,Vz wartość prędkości chwilowej pkt wyraża wzór: 0x01 graphic
RUCH PKT PO OKRĘGU Rozpatruje się ruch pkt po okręgu o promieniu r. Ruch odbywa się od położenia początkowego A0 , jeżeli φ (kąt określający jego położenie, droga kątowa): 0x01 graphic
,0x01 graphic
,0x01 graphic
, 0x01 graphic
-prędkość kątowa, 0x01 graphic
, 0x01 graphic
, 0x01 graphic
,0x01 graphic
. Pochodna kąta obrotu (drogi kątowej) względem czasu to prędkość kątowa (ω). Pochodna względem czasu prędkości kątowej lub II pochodna nazywana jest przyspieszeniem. Prędkość kątowa i przyspieszenie kątowe to wielkości wektorowe. Wektory te są prostopadłe do płaszczyzny okręgu, po którym porusza się pkt. Zwroty tych wektorów określa reguła śruby prawoskrętnej. PĘD PKT MAT Na podstawie II prawa Newtona w postaci 0x01 graphic
. Po uwzględnieniu, że przyspieszenie a można wyprowadzić jako I pochodną wektora po czasie otrzymujemy 0x01 graphic
. Jeżeli wprowadzi się nową wielkość wektorową 0x01 graphic
, to można napisać, że 0x01 graphic
,0x01 graphic
. Wektor 0x01 graphic
równy jest iloczynowi masy i wektora prędkości nosi nazwę pędu (ilości ruchu pkt). Przekształcenie powyższe jest możliwe przy założeniu, że masa jest niezależna od czasu. KRĘT PKT MAT pkt mat o masie m, który porusza się z prędkością równą V. wektor krętu 0x01 graphic
jest równy mom względem bieguna O wektora pędu 0x01 graphic
, czyli jest wielkością otrzymywaną w wyniku mnożenia wektorowego promienia wektora 0x01 graphic
i wektora pędu 0x01 graphic
.0x01 graphic
. w czasie ruchu pkt mat zmieniają się w funkcji czasu wektory jego położenia 0x01 graphic
i wektor prędkości pkt 0x01 graphic
. Obliczamy pochodną wektora krętu względem czasu 0x01 graphic
,0x01 graphic
. Pochodna względem czasu wektora krętu 0x01 graphic
względem nieruchomego bieguna O równa jest mom względem tego bieguna wypadkowej siły F działających na dany pkt mat.



Wyszukiwarka

Podobne podstrony:
sciaga zestawy final(1)
Sciaga sieci wersja 3 final, Studia, Sieci komputerowe i internet
Obróbka cieplna (final version) wersja ściąga 1, ZiIP, II Rok ZIP, Obróbka cieplna i spawalnictwo, o
Final test ściąga
PM FINAL VERSION sciaga
1 sciaga ppt
Architecting Presetation Final Release ppt
metro sciaga id 296943 Nieznany
Opracowanie FINAL miniaturka id Nieznany
ŚCIĄGA HYDROLOGIA
AM2(sciaga) kolos1 id 58845 Nieznany
Narodziny nowożytnego świata ściąga
Art & Intentions (final seminar paper) Lo
finanse sciaga

więcej podobnych podstron