biochemia Darek


Różnica między chlorofilem a i b i hemem- a- pierścień czteropirolowy z centralnie związanym koordynacyjnie jonem Mg, w poz. 3 gr. metylowa, 4 -CH2-CH3,6 karboksylowa, 7- fityl . b- pierśc. czteropirol. z centralnie związanym koordynacyjnie jonem Mg , w poz. 3 gr. aldehydowa, 4 -CH2-CH3, 6-karboksy.,7- fityl hem- pierścień czteropirolowy z centralnie związanym koordynacyjnie jonem Fe, w poz. 4 -CH=CH2, 6-7-reszta propionylowa 2. Mech. łączenie zasad- DNA występ. w postaci dł. Podwójnych nici, zwinięte spiralnie i trwale ze sobą zespolone. W DNA są pary zasad z których każda pochodzi z innego łańcucha i które połączone są ze sobą mostkami wodorowymi. Guanina z cytozyną połączone trzema most. wodor. , mającymi strukturę mocniejszą i zwartą niż połączenie miedzy między adeniną a tyminą dwoma mostkami wodor.,- słabsze spotykane modyfikacje struktury, prowadzące do mutacji w zakresie określ. genów. 3. Wiązania diestrowe- wiąz. Występ. między poszczególnymi nukleotydami powiązane poprzez kw. fosforowy, który jedną gr. -OH łączy się z C`3 cukru jednego nukleotydu, a drugą gr. -OH z C`5 cukru następnego.4. Barwniki o bud. Glikozydowej i od czego zależy ich barwa- antocyjaniny mają charakter jonowy dlatego barwa zależy od pH -kwaśne środ.(od pomar-czerw. Do fiołkowo-czerw.) pH ok. 7 (bezbarwne), pH zasadowe(formy bezwodnikowe o zabarw. Intensyw. Niebieskim), minimalny wpływ na zabarwienie ma różnica w udziale i rozmieszczeniu reszt cukrowych. 5. Rola w kom. Karotenoidów-karotenoidy nienasycone węglowodory rozp. W tłuszczach np. karoteny(pomarańczowa), ksantofile(żółte) biorą udział w fotosyntezie(w absorpcji energii kwantów świetlnych np. β-karoten) 6. Wiązanie koordynacyjne- wiąz . chem. ,które tworzy para elektronów pochodząca od jednego atomu(donora- daje elektrony)wiążącego się z drugim atomem(akceptorem- bierze elektrony) takie wiązanie występ. np. w budowie chlorofilu między koordynacyjnym jonem magnezu a pierścieniem czteropirolowym. Mioglobina-hemoproteina występ. w k. Mięśniowej, biolog. Rla polega na przejmowaniu tlenu z oksyhemoglobiny; w postaci utlenowanej stanowi magazyn tlenu w mięśniach Karboksyhemoglobina- jasnoczerw. Trwałe połączenie tlenku wapnia z atomami żelaza hemoglobiny; hamuje transport tlenu do tkanek, nadmiar- w zatruciach np.. czadem Oksyhemoglobina-łatwo dysocjuje połaczenie hemoglobiny z tlenem w tk. Oddaje tlen mioglobinie i przechodzi w hemoglobine Hemoglobina- hemoproteina czerw., barwnik w erytrocytach złożony z hemu i globiny przenosi tlen atm. Z narządów odechowych do tk. A C02 w kierunku odwrotnym, utrzymuje równowagę zas- kwasową 1. Różnica między chlorofilem a i b i hemem- a- pierścień czteropirolowy z centralnie związanym koordynacyjnie jonem Mg, w poz. 3 gr. metylowa, 4 -CH2-CH3,6 karboksylowa, 7- fityl . b- pierśc. czteropirol. z centralnie związanym koordynacyjnie jonem Mg , w poz. 3 gr. aldehydowa, 4 -CH2-CH3, 6-karboksy.,7- fityl hem- pierścień czteropirolowy z centralnie związanym koordynacyjnie jonem Fe, w poz. 4 -CH=CH2, 6-7-reszta propionylowa 2. Mech. łączenie zasad- DNA występ. w postaci dł. Podwójnych nici, zwinięte spiralnie i trwale ze sobą zespolone. W DNA są pary zasad z których każda pochodzi z innego łańcucha i które połączone są ze sobą mostkami wodorowymi. Guanina z cytozyną połączone trzema most. wodor. , mającymi strukturę mocniejszą i zwartą niż połączenie miedzy między adeniną a tyminą dwoma mostkami wodor.,- słabsze spotykane modyfikacje struktury, prowadzące do mutacji w zakresie określ. genów. 3. Wiązania diestrowe- wiąz. Występ. między poszczególnymi nukleotydami powiązane poprzez kw. fosforowy, który jedną gr. -OH łączy się z C`3 cukru jednego nukleotydu, a drugą gr. -OH z C`5 cukru następnego.4. Barwniki o bud. Glikozydowej i od czego zależy ich barwa- antocyjaniny mają charakter jonowy dlatego barwa zależy od pH -kwaśne środ.(od pomar-czerw. Do fiołkowo-czerw.) pH ok. 7 (bezbarwne), pH zasadowe(formy bezwodnikowe o zabarw. Intensyw. Niebieskim), minimalny wpływ na zabarwienie ma różnica w udziale i rozmieszczeniu reszt cukrowych. 5. Rola w kom. Karotenoidów-karotenoidy nienasycone węglowodory rozp. W tłuszczach np. karoteny(pomarańczowa), ksantofile(żółte) biorą udział w fotosyntezie(w absorpcji energii kwantów świetlnych np. β-karoten) 6. Wiązanie koordynacyjne- wiąz . chem. ,które tworzy para elektronów pochodząca od jednego atomu(donora- daje elektrony)wiążącego się z drugim atomem(akceptorem- bierze elektrony) takie wiązanie występ. np. w budowie chlorofilu między koordynacyjnym jonem magnezu a pierścieniem czteropirolowym.glukozydowymi, amylopektyna- zbud. z krótkich prostych łańcuchów złożonych z ok. 30 jednostek glukozy, połączonymi wiąz. 1-4α- glukozydowymi, zaś między sobą połączonych wiązaniami 1-6 α-glukozydowymi typu izomaltozy- stanowi twór rozgałęziony.Właś.optyczne sacharydów- czynność opt.związana jest z obec.asymetr. atomu węgla.Subst.których wzory róznią się jak przedm. Jego lustrzane odbicie mają rózną skręcalność optyczną, wyróżniamy formy D i L.Przy sacharydach Np.glukozie gr. OH przy drugim C leży po prawej (D) lub po lewej(L),stronie C., alfa i beta - α oznacz a formę w której gr.OH przy nowo powstałym i ostatnim atomie C asymetr. znajduje się we wzorze rzutowym po tej samej stronie. β - oznacza formę w której gr.OH przy tych samych atomach C znajdują się po przeciwnych stronachPodob i różni. W bud.maltozy .laktozy i celobiozy-Są to dwucukry ,mają wiąz.glikozydowe typu 1-4.Maltoza - dwie cząst. α-D glukozy,laktoza - α-glukoza i β-galaktoza celobioza - dwie cząste.β -glukozy..Bud.chityny - szeroko rozpowszech. hemoglikan zbud. z reszt N - acetylo-2-amino-D-glukopiranozy. Jest polisachar. szkiel., występ m.in. u

Bud. Skrobi- zbud. z 2 łańcuchów strukt.- amylozy i amylopektyny, amyloza- stanowi proste dł. nierozgałęzione łańcuchy utworzone z jedn Strukt. typu maltozy, reszty glukozydowe są połączone wyłącznie wiąz. 1-4 α-grzybów . Chityna przy ogrzewaniu z kw.mineral. ulega hydrolizie na glukozaminę. Glikogen- podobny do amylopektyny,jednakże ma cząst. Bardziej rozgałęzioną,łań boczne są krótsze(10-20 reszt glukozy).Mniejsze frakcje są rozp. w H20. Jest to zapasowy wielocukier wyst. W drożdzach i tk.zwie.Gliokozydy α i β - są to prod. Przyłączania alkoh. Do asymet. atomu C monosach.(rzadziej do c. złożon.). Glikozydy nie wykazują zdol. do mutarotacji .α i β glikozydy nie znajdują się ze sobą w równowadze,bo jej ustalenie w glikozydzie jest niemożliwe. Izomaltoza - wchodzi w skład skrobi dzięki obec. Wiąz. Typu 1-4 i 1-6 ,jednym z prod. Hydrolizy amylopektyny jest izomaltoza.Epineny - cukry różniace się konfig. W podstawników przy C sasiadującym z gr. karboksylową np. glukoza.Pólacetale- wiąz.pomiędzy gr.aldeh. lub ketonową a hydroksylową Osazony - zasady org. powodują otwarci pierścienia i reagują z grupą aldehydową i ketonową, tworzą się dobrze krystalizujące połączenia zw. osazonami Laktoza- wł. reduk., obficie w mleku ssaków, ludzkie ok. 6% laktozy, krowie 4,5%, duża wart. Odżywcza, posiada stosunkowo niewielkie ilości słodyczy i nierozpuszczalności , w przem. farmaceut jako skł. tabletek, polepsza ich smak, prod. Odżywek dla niemowląt, do karmienia tuczników Heparyna- znacz. biol. polega na dział. antykoagulacyjnym, wykorz. w lecznictwie, występ. w wątrobie, płucach, mięśniach, w małych ilościach w sercu, nerkach, krwi. .LAKTOZA A CELOBIOZA- celob.-( 4-0-beta-D-glukopiranozylo-D-glukopiranoza), laktoza( 4-0-beta-D-galaktopiranozylo-D-glukopiranoza ) Cykl Krebsa, cykl kwasu cytrynowego, cykl kwasów trójkarboksylowych, drugi etap oddychanie komórkowego zachodzący w mitochondriach, końcowa droga spalania metabolitów powstałych z rozkładu cukrów, tłuszczów i białek. Cykl ten polega na całkowitym utlenianiu czynnego octanu powstałego w procesie glikolizy w szeregu przemian od kwasu octowego do kwasu szczawiooctowego. W przebiegu tych reakcji odłączane są cząsteczki dwutlenku węgla (CO2) oraz atomy wodoru, które łączą się z NAD. W jednym przebiegu cyklu następuje spalanie dwóch atomów węgla, w wyniku czego powstają dwie cząsteczki CO2, odłącza się 8 protonów i 8 elektronów. Istotą cyklu jest to, że jednostka dwuwęglowa, czyli acetylokoenzym A (acetylo-CoA) łączy się z jednostką czterowęglową (kwas szczawiooctowy) dając związek sześciowęglowy (kwas cytrynowy), który ulega dwukrotnie karboksylacji i czterokrotnie odwodorowaniu i w rezultacie przekształca w kwas szczawiooctowy, dzięki czemu może nastąpić kolejny obrót cyklu. W szczególności cykl kwasu cytrynowego zachodzi następująco: acetylo-CoA łączy się z kwasem szczawiooctanowym, z czego powstaje kwas cytrynowy oraz wolny koenzym A (CoA). Kwas cytrynowy w wyniku reakcji kondensacji zostaje przekształcony w kwas izocytrynowy, a ten w wyniku odwodorowania i dekarboksylacji w alfa-ketoglutaran, który po kolejnej dekarboksylacji i odwodornieniu daje bursztynylo-CoA. Związek ten po odłączeniu ATP i wolnego CoA daje bursztynian, natomiast po odłączeniu FADH2 daje fumaran. Następnie w reakcji hydratacji (przyłączania wody) powstaje jabłczan, który Oddając wodór przekształca się w szczawiooctan zamykający cykl.Sumarycznie równanie cyklu Krebsa przedstawia się następująco:acetylo-CoA + 3NAD + FAD + ADP + Pi + 2H2O = 2CO2 + 3NADH+ + FADH2 + ATP + 2H+ + CoAGlikoliza, wieloetapowy, beztlenowy proces enzymatycznego rozszczepienia glukozy zgodnie z sumarycznym schematem: D-glukoza + 2HPO4 2- + 2ADP- + 2NAD → 2CH3CH(OH)COO- (pirogronian) + 2 H2O + 2ATP + 2NADH + 2H+. Glikoliza stanowi główną drogę przemian glukozy w komórkach. Dzięki glikolizie organizm uzupełnia niedobór energii oraz otrzymuje szereg ważnych metabolitów, zużywanych w innych reakcjach. U ssaków glikoliza jest stymulowana przez adrenalinę i glukagon.Kolejne etapy cyklu przedstawiają się następująco:glukoza → glukozo-6-fosforan (+ ADP) → fruktozo-6-fosforan → fruktozo-1,6-bifosforan + ADP → aldehyd 3-fosfoglicerynowy + NADH + H+ → 1,3-bifosfoglicerynian → 3-fosfoglicerynian + ATP → 2-fosfoglicerynian → fosfoenolopirogronian + H2O → pirogronian + ATP.

Mocznikowy cykl Krebsa, cykl ornitynowy, cykl reakcji prowadzących do syntezy mocznika (substancji nietoksycznej) z toksycznych produktów metabolizmu: amoniaku (powstaje z przemiany materii aminokwasów i dwutlenku węgla z cyklu Krebsa).Proces ten zachodzi w mitochondriach komórek wątrobowych w sposób cykliczny, z tym że trzy aminokwasy występują w nim stale: cytrulina, arginina i ornityna. Kolejne etapy cyklu mocznikowego przedstawiają się następująco → ornityna + NH3 + CO2 → cytrulina → cytrulina + NH3 → arginina → mocznik + ornityna → cykl się zamyka.Ornityna powstaje z metabolizmu kwasu glutaminowego i równocześnie jest substratem dla produkcji kwasów orniturowych jako produktów detoksykacji w ptaków. Arginina może zawówno być produktem jak i substratem cyklu mocznikowego, natomiast u owadów i skorupiaków powstaje z niej fosfoarginina, która jest fosfagenem tych bezkręgowców. Mocznik jest substancją wydalaną przez niektóre bezkręgowce, ryby chrzęstnoszkieletowe, płazy i ssaki.Koenzymy, substancje niebiałkowe, drobnocząsteczkowe, będące jednym z dwóch komponentów enzymów złożonych, zawierające zazwyczaj w swym składzie fosfor. Są bardzo luźno związane z częścią białkową enzymu (apoenzymem) i mogą łatwo od niej oddysocjować. Sam koenzym, jak i apoenzym nie przejawiają katalitycznego działania, enzym wykazuje aktywność tylko wtedy, gdy oba komponenty są połączone ze sobą. Przykładem koenzymów są koenzymy dehydrogenaz, które mogą katalizować zarówno reakcje uwodornienia, jak i odwodornienia - zależnie od apoenzymu. Należą NAD, NADP, FAD (dinukleotyd flawino-adeninowy). Dekarboksyliazy-potrzebują gr.prostetycznej PLP.Jedynie dekarboksyliaza 5 -adenozynometionina jest syntetyzwana z udziałem poirogronianu jako kofektora.Oterzymujemy aminy biogenne,jest to jedyna droga ich otrzymania,są niezbędne do zycia .Dzielą się na Enzymy-Dekarboksylaza glutaminianowa,D.histydynowa, D.DSPA(dihydroksyfenylo alaninowa) ,D.cysteino- sulfinianowa, D. Ornitynowa, D.5- adenozylometioninowa.Rozkładany Aminokwas- Glu, Cys, cysteinosulfinian,/ His/dihydroksy -fenyloalanina,His, Tyr, Trp, Phe/ cysteinian, cysteinosulfinian, /alfa ornitynna/ %-adenozynometinina Aminokw-Lizyna- Kadaweryna - stabilizuje struk. błon kom.,Ornityna-putrescyna-stab.struk.błon wewnątrz.Kondensuje z dekarboksylowaną %- adenozynometioniną.Proces przyczynia się do powstawania spermininy, i spermidyny, Seryna-Kolamina-skł.tł.żłożonychm.in kefarin, Treonina- alfa -aminopropanol, Cysteina-cysteamina-skł CoA, Asparaginian- beta-alanina-skł.CoA,kw.pentenowego, anseryny, kanzoryny.Glutaminian-alfa-aminomaślan- współ.z central.układem nerwowym, koordynuje prace mózgu i hamuje synaptyczne przekaz.bodzców, w cent.układzie nerwowym,Histydyna-histamina- charak. Hormonalny, rozszerza nacz krw.,powoduje obniżenie cis krwi. Dihydroksyfenyloalanina-hydroksytyramina-prekursor powstawania adrenaliny i noradr ,Tryptofan- tryptamina, 5-hydroksytryptofan- serotonina-charak.hormon. ,skurcze nacz.krwio.,i mięśni gładkich, Fenyloalanina-fenyloatyloamina, Cysteinosulfinian-tauryna-wchodzi w skł.kw.tłuszczowych .I etap-poł.aminokw.z fosforem pirydoksalu i wytworzenie zasady Schiffa II etap-dekarboksylacja zasdy schiffa z wydzieleniem CO2 i powstaniem poch.aminowej zasady sChiffa, III etap- hydroliza pochodnej aminowejzasady sChiffa z odłączeniem aminy, IV etap- regeneracja fosforanu pirydoksalu KATABOLIZM-Leu, Jle, Val (dezaminacja)ketokwas (+CoA -CO2 -dekarboksylacja)nienasycone tioestry acetylo CoA ANABOLIZM- substratami są produkty fotosyntezy( kw.-3 -fosfoglicerynowy- aminokw.endogenne są syntetyzowane w procesach transaminacji,- dawcami azotu mogą być Glu. Gly, Asp, Asn,.-substratem ważnym w syntezie aminokwasów aromat. Jest kw.szikimianowy - zw.który może być bezpośrednio przekształcony w Trp jest kw.antrymitowy - niektóre aminokw. Mogą być przekształcone w drugie np.seryna w cysteine.- duże znaczenie w biosyntezie aminokw. ma reakcja metylacji,- duże znaczenie ma reakcja alfa hydroksylacji. GLIKOLIZA- a) przeniesienie fosforanu ( 1,3,7, 10 ) b) zmiana położenia reszty fosforanowej ( 8 ) c) izomeryzacji ( 2,4,5 ) d) odwodnienie (dehydratacja) ( 9 ) e) rozszczepienie aldowe f) fosforylacja sprzężona z utlenianiem ( 6 ).Oksydacyjna dekarboksyl.,alfa ketokw.pirogronian NAD + CoA komp.dehydrogenazy pirogroniowej acetylo-CoA + CO2 + NADH + H. Przeksz.pirogronianu w CoA - I etap- dekarboksylacja pirogronianu II etap- gr.hydroksyetylowa jest utleniona do acetylowej (powst.acetylopoamid) III etap- przeniesienie gr.acylowej na CoA i wyt. AcetyloCoa, IV etap- regenacja lipoamidu przez dehydrogenazę kw.liponowego.Cykl Kw.Cytrynowego- kondensacja ( 1 ), odwodnienie( dehydratacja)- (2 ), uwodnienie (hydratacja)- (3,8), dekarboksylacja (4 ), utlanianie (4, 7, 9),fosforylacja substratowa (6 ).Od 4-ej reakcji rozpoczyna się degradacja acetylo-CoA, od 6- ej degenaracja szczawiooctanu.Podsumowanie acetylo- CoA + 3NAD + FAD + GDP+Pi +2H2O 2CO2 + 3NADH + FADH2 + GTP + 2 HAminokw.glukogenne- pirogronian(treonina, alanina, glicyna, cysteina, seryna)-alfa ketoglutaran (glutaminian, histydyna, glutamina, prolina, arginina) - szczawian (asparagina, asparaginian), -fumaran (tyrozyna, fenyloalanina, asparaginian) - bursztynylo- CoA (izoleucyna, metionina, treonina, walina)

Cykl KREBSA-drugi etap oddychanie komórkowego zachodzący w mitochondriach, końcowa droga spalania metabolitów powstałych z rozkładu cukrów, tłuszczów i białek. Cykl ten polega na całkowitym utlenianiu czynnego octanu powstałego w procesie glikolizy w szeregu przemian od kwasu octowego do kwasu szczawiooctowego. W przebiegu tych reakcji odłączane są cząsteczki dwutlenku węgla (CO2) oraz atomy wodoru, które łączą się z NAD. W jednym przebiegu cyklu następuje spalanie dwóch atomów węgla, w wyniku czego powstają dwie cząsteczki CO2, odłącza się 8 protonów i 8 elektronów. Podsumowanie- acetylo-CoA + 3NAD + FAD + ADP + Pi + 2H2O = 2CO2 + 3NADH+ + FADH2 + ATP + 2H+ + CoA. KOMPLEKS DEHYDROGEN. PIROGRONOWEJ - dehydrogenaza pirogronianowa, acetylotransferaza dihydrolipinianowa, dehydrogenaza dihydroliponianowa.KOMPLEKS DEH.ALFA-KETOGLUTARANOWEJ- kofaktory enzymu TPP, lipoamid, CoA, FAD, NAD,-Enzymy - dehydrogenaza alfa - ketoglutaranowa, bursztynylotransferaza (transacytaza bursztynianowa)- rdzeń , dehydrog. amidu kw.liponowego Podklasy hydrolaz(np.amylaza)-katali.reak.hydrolizy,nie wymagają zwykle współdziałania koenzymów.-estrazy(rozkł.wiąz.estrowe),glikozydazy (dział.na wiąz.glikozydowe) peptydazy(kat.rozkł.białek do pepty.aminokwasowych), amidazy .Koenzymy oksydoreduktaz -Katalizują reakcje przebiegające ze zmianą wartoś. skład lub stop.utlenienia zw.org.zmiany te są związane z przeniesieniem at.wodoru, tlenu oraz samych elektronów.dinukleotyd nikotynoadeninowy(NAD) i jego fosforan(NADP),dinukleotyd flawinoadeninowy(FAD),mononukleotyd flawinowy(FMN),kwas liponowy(LipS2),koenzym ku,gr.prostetyczne cytochromów.ATP-przenośnik energii,nukleotyd zb.z adeniny (zasada)rybozy i kw.ortofos(zw.z gr.estrową w poz5)funkcje-przenosz.reszt ortofos.i odczep.ADP,przeno.reszt pirofos.i odczep.AMP,przen.adenozynofos. i odczep.pirofos.,przenosz. adenozyny i odczep.azoto- i pirofos .Koenz.transferaz-ATP,koenzym A,kw.tetrahydrofoliowy(THF),difosforan tiaminy(DPT),fosforan pirydiksalu(PLP),biotyna.Enzymy te katal.reakcję przeniesienia gr.pomiędzy poszcz.związkami zwykle z udział.specyf.enzymów.-aminotransf.-katal.przeniesienie gr.aminowej,-fosfotran.-kat.przen.gr fosfor.z udziałem ATP-acetylotran.-przen. grupy acylowej-glikozylotran-kat.przen.gr.glikozydowej.Proenzym -trypsynogen, pepsynogen, chymotrypsynogen, Prowitaminy-prekursor wit.z których org.może wyt.wit.A(wpływ enz.jelitowych) i wit.D(wpł.prom.UV)Specy.absolut.-enz.mają zdol. Do przyspieszania reakcji wyłącznie jednego substr. np.ureaza hydrolizację tylko mocznika.Kw.liponowy-to koenzym oksyreduktaz.wys.w wątr i droż.. Jest to disulfidowa poch. kw.oktanowego.występ.w połą. z białkiem.Kw.foliowy(kw.pteroiloglutaminowy)-u zw.niezbę. do wytwarzania czerwonych krwinek w szpiku kostnym,konieczna do syntezy kw,nukleinowych.StałaMichaelisa-jest to stęz.substratu(mol/dm3),przy którym szybkość reakcji enzym. jest równa jej szybk.max.pH na enzymy-skrajne wart,pH działają denaturująco na bialka enz.,niewielkie odchylenia od wart.optymal.(przy której obserwuje się największą szyb.kataliz.reakcji)mogą nieznacznie denaturować białko,a mimo to wpł.na zmiejszenie szyb.reakcji.alfa i beta amylaza-alfa-atakuje wiąz. znajdujące się w środku ,następ.rozpad wielkiej cząst.amylozy.beta-atakuje co drugie wiązanie poczynając od nieredukującego końca łań.wielocukru.Enzym-ma bud.białkową-Apoenzym-częśc białkowa enzymu,warunkuje specy.substratową działania enz.gdyż wykazuje powinowactwo do substratu.-Koenzym-cześć niebiał.okresla typ katalizowanego procesu, decyduje o tym jakiej przemianie ulega substrat. Ener.aktywacji-określona porcja energi ,którą układ musi pobrać w celu przezwycięzenia bezwładności chemicznej cząstek.E akt. Może być wydatnie zmiejszona w r. katalizowanej.Wit. A- powst. z karotenów,tworzy się wit. A w procesie enzymatycznego,symetrycznego,oksydacyjnego rozpadu cząstki karotenu.Rozpad symetr. odbywa się jedynie w przew.pokar,a w innych org.prowadzi do wielu reakcji ubocznych.Funkcje koenzymu CoQ-zespala komplek. 1 i 2 dokonujące pierwot.utlenianiaNADH(lub bursztynianu)z kompl. 3i4 na które przekazują elektrony-przenosi protony i elektronysłuży jako bogaty mag.elektronów użyteczny przy dużych obciążeniach łań.oddech.-bierze udział w metabolizmie jako pośrednik w trans. elektronów.-strukt.bardzo podobna do wit.rozp. w tł.Specyficzność grupowa-enzymy mogą wykorzystywać w char.substratu określoną gr.podobnych do siebie substancji Np.oksydaza aminokwasowa katalizuje oksydacyjną deaminację wielu aminokwasów.Kofaktor-drobno cząst. zw.o funkcji aktywatora,jego działanie polega na współ.z białkiem enzymu. Są to liczne witaminy lub ich pochodne wiąz.rozczepianego-izomerazy(okr.typ izomeryzacji)-ligazyokr.typ wiąz.wytwarzanego)



Wyszukiwarka

Podobne podstrony:
biochemia Darek charmonijka
BIOCHEMIA DAREK CHARMONIJKA DOC
BIOCHEMIA DAREK D UGOPIS PO DOC
11 BIOCHEMIA horyzontalny transfer genów
Biochemia z biofizyką Seminarium 2
Podstawy biochemii
08 BIOCHEMIA mechanizmy adaptac mikroor ANG 2id 7389 ppt
BIOCHEMICZNE EFEKTY STRESU (2B)
Biochemia, ATP
biochemia krwi 45
ENZYMY prezentacja biochemia
biochemia stresu
Darek ból
04 BIOCHEMIA
05 BIOCHEMIA Zw wysokoenergetyczne ATP
Biochemia 4 Lipidy

więcej podobnych podstron