Laboratorium Mechaniki Lotu
Aproksymacja biegunowej oporowej samolotu.
Łukasz Krawczyk
III LiK
nr ind. 113442
Schemat aproksymacji metodą najmniejszych kwadratów:
APROKSYMACJA 1:
y=Ax2+Bx+C
S(A,B,C) → Σ(Axi2+Bxi+C-yi)2 →min S
Σ(Axi2+Bxi+C-yi)2=A2 Σxi4+2AB Σxi3+B2 Σxi2+2AC Σxi2-2A Σxi2yi+2BC Σxi-2B Σxiyi+nC2-2C Σyi+ Σyi2
$$\frac{\text{δS}}{\text{δA}} = 2A\sum_{}^{}x_{i}^{4} + 2B\sum_{}^{}x_{i}^{3} + 2C\sum_{}^{}x_{i}^{2} - 2\sum_{}^{}x_{i}^{2}y_{i} = 0$$
$$\frac{\text{δS}}{\text{δB}} = 2A\sum_{}^{}x_{i}^{3} + 2B\sum_{}^{}x_{i}^{2} + 2C\sum_{}^{}x_{i} - 2\sum_{}^{}x_{i}^{2}y_{i} = 0$$
$$\frac{\text{δS}}{\text{δC}} = 2A\sum_{}^{}x_{i}^{2} + 2B\sum_{}^{}x_{i} + 2Cn - 2\sum_{}^{}y_{i} = 0$$
$$A\sum_{}^{}x_{i}^{4} + B\sum_{}^{}x_{i}^{3} + C\sum_{}^{}x_{i}^{2} = \sum_{}^{}x_{i}^{2}y_{i}$$
$$A\sum_{}^{}x_{i}^{3} + B\sum_{}^{}x_{i}^{2} + C\sum_{}^{}x_{i} = \sum_{}^{}x_{i}^{2}y_{i}$$
$$A\sum_{}^{}x_{i}^{2} + B\sum_{}^{}x_{i} + Cn = \sum_{}^{}y_{i}$$
W =$\ \left| \begin{matrix} \sum_{}^{}x_{i}^{4} & \sum_{}^{}x_{i}^{3} & \sum_{}^{}x_{i}^{2} \\ \sum_{}^{}x_{i}^{3} & \sum_{}^{}x_{i}^{2} & \sum_{}^{}x_{i} \\ \sum_{}^{}x_{i}^{2} & \sum_{}^{}x_{i} & n \\ \end{matrix} \right| = \ $n$\sum_{}^{}x_{i}^{4}\sum_{}^{}x_{i}^{2} + 2\sum_{}^{}x_{i}^{2}\sum_{}^{}{x_{i}\sum_{}^{}x_{i}^{3}} - {(\sum_{}^{}{x_{i}^{2})}}^{3} - \sum_{}^{}x_{i}^{2}\sum_{}^{}x_{i}^{4} - n{(\sum_{}^{}{x_{i}^{3})}}^{2}$
WA=$\ \left| \begin{matrix} \sum_{}^{}x_{i}^{2}y_{i} & \sum_{}^{}x_{i}^{3} & \sum_{}^{}x_{i}^{2} \\ \sum_{}^{}{x_{i}y_{i}} & \sum_{}^{}x_{i}^{2} & \sum_{}^{}x_{i} \\ \sum_{}^{}y_{i} & \sum_{}^{}x_{i} & n \\ \end{matrix} \right| = n\sum_{}^{}x_{i}^{2}\sum_{}^{}{x_{i}^{2}y_{i}} + \sum_{}^{}x_{i}\sum_{}^{}x_{i}^{2}\sum_{}^{}{x_{i}y}_{i} + \sum_{}^{}x_{i}\sum_{}^{}x_{i}^{3}\sum_{}^{}y_{i} - {(\sum_{}^{}{x_{i}^{2})}}^{2}\sum_{}^{}y_{i} - {\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ - (\sum_{}^{}{x_{i}^{2})}}^{2}\sum_{}^{}{x_{i}^{2}y_{i}} - n\sum_{}^{}x_{i}^{3}\sum_{}^{}{x_{i}y}_{i}\ $
WB=$\ \left| \begin{matrix} \sum_{}^{}x_{i}^{4} & \sum_{}^{}{x_{i}^{2}y_{i}} & \sum_{}^{}x_{i}^{2} \\ \sum_{}^{}x_{i}^{3} & \sum_{}^{}{x_{i}y_{i}} & \sum_{}^{}x_{i} \\ \sum_{}^{}x_{i}^{2} & \sum_{}^{}y_{i} & n \\ \end{matrix} \right| = \ n\sum_{}^{}x_{i}^{4}\sum_{}^{}{x_{i}y_{i}} + \sum_{}^{}x_{i}^{2}\sum_{}^{}x_{i}^{3}\sum_{}^{}y_{i} + \sum_{}^{}x_{i}^{2}\sum_{}^{}{x_{i}\sum_{}^{}x_{i}^{2}}y_{i} + {(\sum_{}^{}{x_{i}^{2})}}^{2}\sum_{}^{}{x_{i}y_{i}} + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + \sum_{}^{}x_{i}\sum_{}^{}x_{i}^{4}\sum_{}^{}{y_{i} - n}\sum_{}^{}x_{i}^{3}\sum_{}^{}{x_{i}^{2}y_{i}}$
WC=$\ \left| \begin{matrix} \sum_{}^{}x_{i}^{4} & \sum_{}^{}x_{i}^{3} & \sum_{}^{}x_{i}^{2} \\ \sum_{}^{}x_{i}^{3} & \sum_{}^{}x_{i}^{2} & \sum_{}^{}x_{i} \\ \sum_{}^{}x_{i}^{2} & \sum_{}^{}x_{i} & n \\ \end{matrix} \right| = \sum_{}^{}x_{i}^{4}\sum_{}^{}x_{i}^{2}\sum_{}^{}y_{i} + \sum_{}^{}x_{i}^{3}\sum_{}^{}{x_{i}\sum_{}^{}x_{i}^{2}}y_{i}$+$\sum_{}^{}x_{i}^{2}\sum_{}^{}x_{i}^{3}\sum_{}^{}{x_{i}y_{i}} - {(\sum_{}^{}{x_{i}^{2})}}^{2}\sum_{}^{}{x_{i}^{2}y_{i} - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ - \sum_{}^{}x_{i}\sum_{}^{}x_{i}^{4}\sum_{}^{}{x_{i}y_{i}} - {(\sum_{}^{}{x_{i}^{3})}}^{2}\sum_{}^{}y_{i}}$
$A = \frac{W_{A}}{W}$ ; $B = \frac{W_{B}}{W}$; $C = \frac{W_{C}}{W}$
APROKSYMAJCA 2:
y=Ax2+B
S(A,B) → Σ(Axi2+B -yi)2 →min S
Σ(Axi2+B-yi)2=A2 Σxi4+2AB Σxi2+nB2-2A Σxi2yi-2B Σyi+ Σyi2
$$\frac{\text{δS}}{\text{δA}} = 2A\sum_{}^{}x_{i}^{4} + 2B\sum_{}^{}x_{i}^{2} - 2\sum_{}^{}x_{i}^{2}y_{i} = 0$$
$$\frac{\text{δS}}{\text{δB}} = 2A\sum_{}^{}x_{i}^{2} + 2nB - 2\sum_{}^{}x_{i}^{2}y_{i} = 0$$
$$A\sum_{}^{}x_{i}^{4} + B\sum_{}^{}x_{i}^{2} = \sum_{}^{}x_{i}^{2}y_{i}$$
$$A\sum_{}^{}x_{i}^{2} + nB = \sum_{}^{}y_{i}$$
W =$\ \left| \begin{matrix} \sum_{}^{}x_{i}^{4} & \sum_{}^{}x_{i}^{2} \\ \sum_{}^{}x_{i}^{2} & n \\ \end{matrix} \right| = \ $n$\sum_{}^{}x_{i}^{4} - (\sum_{}^{}x_{i}^{2})$2
WA =$\ \left| \begin{matrix} \sum_{}^{}x_{i}^{2}y_{i} & \sum_{}^{}x_{i}^{2} \\ \sum_{}^{}y_{i} & n \\ \end{matrix} \right| = \ n\sum_{}^{}x_{i}^{2}y_{i} - \sum_{}^{}x_{i}^{2}y_{i}$
WB =$\ \left| \begin{matrix} \sum_{}^{}x_{i}^{4} & \sum_{}^{}x_{i}^{2}y_{i} \\ \sum_{}^{}x_{i}^{2} & \sum_{}^{}y_{i} \\ \end{matrix} \right| = \sum_{}^{}x_{i}^{4}y_{i} - \sum_{}^{}x_{i}^{2}y_{i}\sum_{}^{}x_{i}^{2}\ $
$A = \frac{W_{A}}{W}$ ; $B = \frac{W_{B}}{W}$;
$$A = \frac{\overset{\overline{}}{x_{i}^{2}y_{i}} - \overset{\overline{}}{x_{i}^{2}}\overset{\overline{}}{\text{\ y}_{i}}}{\overset{\overline{}}{x_{i}^{4}} - \left( \overset{\overline{}}{x_{i}^{2}} \right)^{2}}$$
$$B = \frac{\overset{\overline{}}{x_{i}^{4}} \bullet \overset{\overline{}}{y_{i}} - \overset{\overline{}}{x_{i}^{2}} \bullet \overset{\overline{}}{\text{\ x}_{i}^{2}y_{i}}}{\overset{\overline{}}{x_{i}^{4}} - \left( \overset{\overline{}}{x_{i}^{2}} \right)^{2}}$$
Dane do obliczeń:
Cz | Cx | ||||||
---|---|---|---|---|---|---|---|
x | x2 | x3 | x4 | y | xy | x2y | |
1 | -1,19 | 1,4161 | -1,685159 | 2,00533921 | 0,087 | -0,10353 | 0,1232007 |
2 | -1,02 | 1,0404 | -1,061208 | 1,08243216 | 0,070 | -0,0714 | 0,072828 |
3 | -0,85 | 0,7225 | -0,614125 | 0,52200625 | 0,057 | -0,04845 | 0,0411825 |
4 | -0,68 | 0,4624 | -0,314432 | 0,21381376 | 0,045 | -0,0306 | 0,020808 |
5 | -0,51 | 0,2601 | -0,132651 | 0,06765201 | 0,031 | -0,01581 | 0,0080631 |
6 | 0,00 | 0 | 0 | 0 | 0,026 | 0 | 0 |
7 | 0,51 | 0,2601 | 0,132651 | 0,06765201 | 0,031 | 0,01581 | 0,0080631 |
8 | 0,68 | 0,4624 | 0,314432 | 0,21381376 | 0,045 | 0,0306 | 0,020808 |
9 | 0,85 | 0,7225 | 0,614125 | 0,52200625 | 0,057 | 0,04845 | 0,0411825 |
10 | 1,02 | 1,0404 | 1,061208 | 1,08243216 | 0,070 | 0,0714 | 0,072828 |
11 | 1,19 | 1,4161 | 1,685159 | 2,00533921 | 0,087 | 0,10353 | 0,1232007 |
12 | 1,36 | 1,8496 | 2,515456 | 3,42102016 | 0,108 | 0,14688 | 0,1997568 |
13 | 1,53 | 2,3409 | 3,581577 | 5,47981281 | 0,133 | 0,20349 | 0,3113397 |
14 | 1,7 | 2,89 | 4,913 | 8,3521 | 0,169 | 0,2873 | 0,48841 |
E | 4,59 | 14,8835 | 11,010033 | 25,0354198 | 1,016 | 0,63767 | 1,5316711 |
średnia | 0,3278571 | 1,06310714 | 0,78643093 | 1,78824427 | 0,0725714 | 0,04554786 | 0,10940508 |
Aproksymacja I | Aproksymacja II |
---|---|
model matematyczny | y=ax^2+bx+c |
W | Wa |
0,4370991 | 0,02129628 |
A | |
0,04872184 |
aproksymacja 1 | aproksymacja 2 | |
---|---|---|
Cxa 1 | Cxa 2 | |
0,089102311 | 0,089873201 | |
0,070872283 | 0,071458449 | |
0,055458379 | 0,055876736 | |
0,042860596 | 0,043128062 | |
0,033078936 | 0,033212427 | |
0,020630692 | 0,020463753 | |
0,03352755 | 0,033212427 | |
0,043458748 | 0,043128062 | |
0,056206068 | 0,055876736 | |
0,071769511 | 0,071458449 | |
0,090149077 | 0,089873201 | |
0,111344765 | 0,111120991 | |
0,135356575 | 0,13520182 | |
0,162184508 | 0,162115687 |
Wykres: