AAB, AAP, ABP, dAB***$d_{\text{AP}}^{} = \frac{d_{\text{AB}}}{\sin{( \propto + \beta)}}\sin\beta,\ d_{\text{BP}}^{} = \frac{d_{\text{AB}}}{\sin{(\alpha + \beta)}}\sin\alpha$
xP = xA + dAPcosAAP = xB + dBPcosABP, xP = xB + dBPsinABP
$$v_{d} = - \frac{x_{k}^{} - x_{p}^{}}{d_{\text{pk}}^{}}d_{\text{xp}} - \frac{y_{k}^{} - y_{p}^{}}{d_{\text{pk}}^{}}d_{\text{yp}} + \frac{x_{k}^{} - x_{p}^{}}{d_{\text{pk}}^{}}d_{\text{xk}} + \frac{y_{k}^{} - y_{p}^{}}{d_{\text{pk}}^{}}d_{\text{yk}} - (d_{\text{pk}} - d_{\text{pk}}^{})$$
$${v_{\alpha} = \frac{y_{l}^{} - y_{c}^{}}{{{(d}_{\text{cl}}^{})}^{2}}d_{\text{xl}} - \frac{x_{l}^{} - x_{c}^{}}{{{(d}_{\text{cl}}^{})}^{2}}d_{\text{yl}} - \frac{y_{p}^{} - y_{c}^{}}{\left( d_{\text{cp}}^{} \right)^{2}}d_{\text{xp}} + \frac{x_{p}^{} - x_{c}^{}}{{{(d}_{\text{cp}}^{})}^{2}}d_{\text{yp}} - \backslash n}{- \left( \frac{y_{l}^{} - y_{c}^{}}{{{(d}_{\text{cl}}^{})}^{2}} - \frac{y_{p}^{} - y_{c}^{}}{\left( d_{\text{cp}}^{} \right)^{2}} \right)d_{\text{xc}} + \left( \frac{x_{l}^{} - x_{c}^{}}{{{(d}_{\text{cl}}^{})}^{2}} - \frac{x_{p}^{} - x_{c}^{}}{{{(d}_{\text{cp}}^{})}^{2}} \right)d_{\text{yv}} - (\alpha - \alpha^{})}$$
AtPA, AtPL, (AtPA)-1, xe=Q AtPL, V=Axe-L, dhe=dh+V, VtPV, m0, Chh=m02AQAt, CVV=m02(P-1-AQAt)