matma

(1 + i)

a=1 , b=1 ; $\left| z \right| = \sqrt{a^{2} + b^{2}}$ = $\sqrt{1^{2} + 1^{2}}$=$\sqrt{2}$ ;

cos α = $\frac{a}{|z|}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$ ; sin α = $\frac{b}{|z|}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$ => α=45◦ => $\frac{\pi}{4}$

(-1 - i)

a=-1 , b=-1 ; $\left| z \right| = \sqrt{a^{2} + b^{2}}$ = $\sqrt{{( - 1)}^{2} + ({- 1)}^{2}}$=$\sqrt{2}$ ;

cos α = $\frac{a}{|z|}$=$\frac{- 1}{\sqrt{2}}$=$- \frac{\sqrt{2}}{2}$ ; sin α = $\frac{b}{|z|}$=$\frac{- 1}{\sqrt{2}}$=$- \frac{\sqrt{2}}{2}$ => α=225◦ =>180◦+45◦ => $\frac{5}{4}\ \pi$

(1 - i)

a=1 , b=-1 ; $\left| z \right| = \sqrt{a^{2} + b^{2}}$ = $\sqrt{1^{2} + ({- 1)}^{2}}$=$\sqrt{2}$ ;

cos α = $\frac{a}{|z|}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$ ; sin α = $\frac{b}{|z|}$=$\frac{- 1}{\sqrt{2}}$=$- \frac{\sqrt{2}}{2}$ => α=315◦ =>360◦-45◦ => $\frac{7}{4}\ \pi$

(-1 + i)

a=-1 , b=+1 ; $\left| z \right| = \sqrt{a^{2} + b^{2}}$ = $\sqrt{{( - 1)}^{2} + 1^{2}}$=$\sqrt{2}$ ;

cos α = $\frac{a}{|z|}$=$\frac{- 1}{\sqrt{2}}$=$- \frac{\sqrt{2}}{2}$ ; sin α = $\frac{b}{|z|}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$ => α=135◦ =>180◦-45◦ => $\frac{3}{4}\ \pi$

(1 + $\sqrt{\mathbf{3}}$i)

a=1 , b=$\sqrt{3}$ ; $\left| z \right| = \sqrt{a^{2} + b^{2}}$ = $\sqrt{1^{2} + {(\sqrt{3})}^{2}}$=$\sqrt{4}$=2 ;

cos α = $\frac{a}{|z|}$=$\frac{1}{2}$ ; sin α = $\frac{b}{|z|}$=$\frac{\sqrt{3}}{2}$ => α=60◦ => $\frac{\pi}{3}$

(-1 - $\sqrt{\mathbf{3}}$i)

a=-1 , b=$- \sqrt{3}$ ; $\left| z \right| = \sqrt{a^{2} + b^{2}}$ = $\sqrt{{( - 1)}^{2} + {( - \sqrt{3})}^{2}}$=$\sqrt{4}$=2 ;

cos α = $\frac{a}{|z|}$=$- \frac{1}{2}$ ; sin α = $\frac{b}{|z|}$=$- \frac{\sqrt{3}}{2}$ => α=240◦=>180◦+60◦ => $\frac{4}{3}\ \pi$

(-1 + $\sqrt{\mathbf{3}}$i)

a=-1 , b=$\sqrt{3}$ ; $\left| z \right| = \sqrt{a^{2} + b^{2}}$ = $\sqrt{{( - 1)}^{2} + {(\sqrt{3})}^{2}}$=$\sqrt{4}$=2 ;

cos α = $\frac{a}{|z|}$=$- \frac{1}{2}$ ; sin α = $\frac{b}{|z|}$=$\frac{\sqrt{3}}{2}$ => α=120◦=>180◦-60◦ => $\frac{2}{3}\ \pi$

(1 - $\sqrt{\mathbf{3}}$i)

a=1 , b=$- \sqrt{3}$ ; $\left| z \right| = \sqrt{a^{2} + b^{2}}$ = $\sqrt{1^{2} + {( - \sqrt{3})}^{2}}$=$\sqrt{4}$=2 ;

cos α = $\frac{a}{|z|}$= $\frac{1}{2}$ ; sin α = $\frac{b}{|z|}$=$- \frac{\sqrt{3}}{2}$ => α=300◦=>360◦-60◦ => $\frac{5}{3}\ \pi$

($\sqrt{\mathbf{3}}$ + i)

a=$\sqrt{3}$ , b=1; $\left| z \right| = \sqrt{a^{2} + b^{2}}$ = $\sqrt{{(\sqrt{3})}^{2} + 1^{2}}$=$\sqrt{4}$=2 ;

cos α = $\frac{a}{|z|}$=$\frac{\sqrt{3}}{2}$ ; sin α = $\frac{b}{|z|}$=$\frac{1}{2}$ => α=30◦ => $\frac{\pi}{6}$

($\mathbf{-}\sqrt{\mathbf{3}}$ - i)

a=$- \sqrt{3}$ , b=-1; $\left| z \right| = \sqrt{a^{2} + b^{2}}$ = $\sqrt{{( - \sqrt{3})}^{2} + {( - 1)}^{2}}$=$\sqrt{4}$=2 ;

cos α = $\frac{a}{|z|}$=$- \frac{\sqrt{3}}{2}$ ; sin α = $\frac{b}{|z|}$=$- \frac{1}{2}$ => α=210◦=>180◦+30◦ => $\frac{7}{6}\ \pi$

($\mathbf{-}\sqrt{\mathbf{3}}$ + i)

a=$- \sqrt{3}$ , b=1; $\left| z \right| = \sqrt{a^{2} + b^{2}}$ = $\sqrt{{( - \sqrt{3})}^{2} + 1^{2}}$=$\sqrt{4}$=2 ;

cos α = $\frac{a}{|z|}$=$- \frac{\sqrt{3}}{2}$ ; sin α = $\frac{b}{|z|}$=$\ \frac{1}{2}$ => α=150◦=>180◦-30◦ => $\frac{5}{6}\ \pi$

($\sqrt{\mathbf{3}}$ - i)

a=$\sqrt{3}$ , b=-1; $\left| z \right| = \sqrt{a^{2} + b^{2}}$ = $\sqrt{{(\sqrt{3})}^{2} + {( - 1)}^{2}}$=$\sqrt{4}$=2 ;

cos α = $\frac{a}{|z|}$=$- \frac{\sqrt{3}}{2}$ ; sin α = $\frac{b}{|z|}$=$- \frac{1}{2}$ => α=330◦=>360◦-30◦ => $\frac{11}{6}\ \pi$


Wyszukiwarka

Podobne podstrony:
FiR matma w2N
FiR Matma w7 2011
egz matma
FiR matma 11
Egzamin Semestr I matma id 680987
matma egz
matma ćw str 1
Zadania M6 09.10.2012, mechanika i budowa maszyn, politechnika, polibuda, matma, matma
wszystkie wykłady z matmy stoiński - wersja na telefon, MATMA, matematyka
egzamin - matma, Ekonomia, Ekonomia stacjonarna I stopień, I rok
gim Wykresy funkcji - gimnazjum, gimnazjum i podstawówka, gimnazjum, polak, matma
Matma zadania (IZA)
matma
ściąga matma funkcje trygonomertyczne
Matma test all
Sciaga matma
matma dyskretna 05 id 287941 Nieznany
matma tryg wzory skróconego

więcej podobnych podstron