Dynamika z robotyki

Dawid Bębenek gr. 29

Dynamika Robotów

Manipulator 1

Określenie współrzędnych uogólnionych:

q1 = d1


q2 = θ2 


q3 = d4


J2Z = J2 + m2l22

Energia kinetyczna:


$$E_{1} = \frac{1}{2}m_{1}{\dot{d_{1}}}^{2}$$


$$E_{2} = \frac{1}{2}J_{2Z}{\dot{\theta}}_{2}^{2} + \frac{1}{2}m_{2}{\dot{d}}_{1}^{2}$$


$$E_{3} = \frac{1}{2}{(J}_{3Z} + \ m_{3}l_{2}^{}{)\dot{\theta}}_{2}^{2} + \frac{1}{2}m_{3}{\dot{d}}_{1}^{2} + \frac{1}{2}m_{3}{\dot{d}}_{4}^{2}$$


E  =  E1  +  E2  +  E3 

Energia potencjalna:


V1 =  m1gd1


V2 =  m2g(d1 + l2)


V3 =  m3g(d1 + l2)


V  =  V1  +  V2  +  V3


$$E\ = \ \frac{1}{2}m_{1}\dot{{d_{1}}^{2}} + \frac{1}{2}J_{2Z}{\dot{\theta}}_{2}^{2} + \frac{1}{2}m_{2}{\dot{d}}_{1}^{2} + \frac{1}{2}{(J}_{3Z} + \ m_{3}l_{2}^{}{)\dot{\theta}}_{2}^{2} + \frac{1}{2}m_{3}{\dot{d}}_{1}^{2} + \frac{1}{2}m_{3}{\dot{d}}_{4}^{2}$$

V  =  m1gd1 + m2g(d1 + l2) + m3g(d1 + l2)

$L\ = \ E\ \ V\ = \frac{1}{2}m_{1}{\dot{d_{1}}}^{2} + \frac{1}{2}J_{2Z}{\dot{\theta}}_{2}^{2} + \frac{1}{2}m_{2}{\dot{d}}_{1}^{2} + \frac{1}{2}{(J}_{3Z} + \ m_{3}l_{2}^{}{)\dot{\theta}}_{2}^{2} + \frac{1}{2}m_{3}{\dot{d}}_{1}^{2} + \frac{1}{2}m_{3}{\dot{d}}_{4}^{2} - m_{1}gd_{1} - m_{2}g{(d}_{1} + l_{2}) - m_{3}g(d_{1} + l_{2})$


$$\frac{\partial L}{\partial\theta_{2}} = 0$$


$$\frac{\partial L}{\partial\dot{\theta_{2}}} = \dot{\theta_{2}}(J_{2Z} + J_{3Z} + \ m_{3}l_{2}^{})$$


$$\frac{\partial L}{\partial d_{1}} = - g(m_{1} + m_{2} + m_{3})$$


$$\frac{\partial L}{\partial\dot{d_{1}}} = \dot{d_{1}}(m_{1} + m_{2} + m_{3})$$


$$\frac{\partial L}{\partial d_{4}} = 0$$


$$\frac{\partial L}{\partial\dot{d_{4}}} = \dot{d_{4}}m_{3}$$


$$\frac{d}{\text{dt}}\left\lbrack \frac{\partial L}{\partial\dot{\theta_{1}}} \right\rbrack = \ddot{\theta_{2}(}J_{2Z} + J_{3Z} + \ m_{3}l_{2}^{})$$


$$\frac{d}{\text{dt}}\left\lbrack \frac{\partial L}{\partial\dot{d_{1}}} \right\rbrack = \ddot{d_{1}}(m_{1} + m_{2} + m_{3})$$


$$\frac{d}{\text{dt}}\left\lbrack \frac{\partial L}{\partial\dot{d_{4}}} \right\rbrack = \ddot{d_{4}}m_{3}$$

Równania Lagrange’a


$$\mathbf{\tau}_{\mathbf{1}}\mathbf{\lbrack Nm\rbrack = \ }\ddot{\mathbf{\theta}_{\mathbf{1}}}\mathbf{(J}_{\mathbf{1}\mathbf{Z}}\mathbf{+}\mathbf{J}_{\mathbf{2}\mathbf{Z}}\mathbf{+}\mathbf{J}_{\mathbf{3}\mathbf{Z}_{\mathbf{1}}}\mathbf{+ \ }\mathbf{m}_{\mathbf{3}}\mathbf{l}_{\mathbf{2}}^{\mathbf{2}}\mathbf{)}$$


$$\mathbf{\tau}_{\mathbf{2}}\left\lbrack \mathbf{N} \right\rbrack\mathbf{=}\ddot{\mathbf{d}_{\mathbf{1}}}\left( \mathbf{m}_{\mathbf{1}}\mathbf{+}\mathbf{m}_{\mathbf{2}}\mathbf{+}\mathbf{m}_{\mathbf{3}} \right)\mathbf{+ g(}\mathbf{m}_{\mathbf{1}}\mathbf{+}\mathbf{m}_{\mathbf{2}}\mathbf{+}\mathbf{m}_{\mathbf{3}}\mathbf{)}$$


$$\mathbf{\tau}_{\mathbf{3}}\mathbf{\lbrack N\rbrack =}\ddot{\mathbf{d}_{\mathbf{2}}}\mathbf{m}_{\mathbf{3}}$$

Manipulator 2

Określenie współrzędnych uogólnionych:

q1 = θ1


q2 = d1


q3 = θ2


J2Z = J2 + m2l12

Energia kinetyczna:


$$E_{1} = \frac{1}{2}J_{1Z}{\dot{\theta}}_{1}^{2}$$


$$E_{2} = \frac{1}{2}J_{2Z}{\dot{\theta}}_{1}^{2} + \frac{1}{2}m_{2}{\dot{d}}_{1}^{2}$$


$$E_{3} = \frac{1}{2}{{\dot{\theta}}_{1}^{2}(J}_{3Z_{1}} + \ m_{3}r_{1}sin(\theta_{2})) + \frac{1}{2}m_{3}{\dot{d}}_{1}^{2} + \frac{1}{2}J_{3Z_{1}}{\dot{\theta}}_{2}^{2}$$


E  =  E1  +  E2  +  E3

Energia potencjalna:


V1 =  m1gh1


V2 =  m2gd1

V3 =  m3g(d1 − l2cos(θ2))


V  =  V1  +  V2  +  V3


$$L\ = \ E\ \ V = \frac{1}{2}J_{1Z}{\dot{\theta}}_{1}^{2} + \frac{1}{2}J_{2Z}{\dot{\theta}}_{1}^{2} + \frac{1}{2}m_{2}{\dot{d}}_{1}^{2} + \frac{1}{2}{{\dot{\theta}}_{1}^{2}(J}_{3Z_{1}} + \ m_{3}r_{1}sin(\theta_{2})) + \frac{1}{2}m_{3}{\dot{d}}_{1}^{2} + \frac{1}{2}J_{3Z_{1}}{\dot{\theta}}_{2}^{2} - m_{1}gh_{1} - m_{2}gd_{1} - m_{3}g({d_{1} - l}_{2}cos(\theta_{2}))$$


$$\frac{\partial L}{\partial\theta_{1}} = 0$$


$$\frac{\partial L}{\partial\dot{\theta_{1}}} = {\dot{\theta_{1}}(J_{1Z} + J_{2Z} + J}_{3Z} + \ m_{3}r_{1}sin(\theta_{2}))$$


$$\frac{\partial L}{\partial d_{1}} = - g\left( m_{2} + m_{3} \right)$$


$$\frac{\partial L}{\partial\dot{d_{1}}} = (m_{2} + m_{3})\dot{d_{1}}$$


$$\frac{\partial L}{\partial\theta_{2}} = \ m_{3}r_{1}\cos\left( \theta_{2} \right) - m_{3}gl_{2}cos(\theta_{2})$$


$$\frac{\partial L}{\partial\dot{\theta_{2}}} = \dot{\theta_{2}}J_{3Z}$$


$$\frac{d}{\text{dt}}\left\lbrack \frac{\partial L}{\partial\dot{\theta_{1}}} \right\rbrack = \ddot{\theta_{1}}({J_{1Z} + J_{2Z} + J}_{3Z} + \ m_{3}d_{1}^{2})$$


$$\frac{d}{\text{dt}}\left\lbrack \frac{\partial L}{\partial\dot{d_{1}}} \right\rbrack = \ddot{d_{1}}(m_{2} + m_{3})$$


$$\frac{d}{\text{dt}}\left\lbrack \frac{\partial L}{\partial\dot{\theta_{2}}} \right\rbrack = \ddot{\theta_{2}}J_{3Z}$$

Równania Lagrange’a


$$\mathbf{\tau}_{\mathbf{1}}\mathbf{\lbrack Nm\rbrack = \ }\ddot{\mathbf{\theta}_{\mathbf{1}}}\mathbf{(}{\mathbf{J}_{\mathbf{1}\mathbf{Z}}\mathbf{+}\mathbf{J}_{\mathbf{2}\mathbf{Z}}\mathbf{+ J}}_{\mathbf{3}\mathbf{Z}}\mathbf{+ \ }\mathbf{m}_{\mathbf{3}}\mathbf{d}_{\mathbf{2}}^{\mathbf{2}}\mathbf{)}$$


$$\mathbf{\tau}_{\mathbf{2}}\left\lbrack \mathbf{N} \right\rbrack\mathbf{=}\ddot{\mathbf{d}_{\mathbf{1}}}\left( \mathbf{m}_{\mathbf{2}}\mathbf{+}\mathbf{m}_{\mathbf{3}} \right)\mathbf{+ g}\left( \mathbf{m}_{\mathbf{2}}\mathbf{+}\mathbf{m}_{\mathbf{3}} \right)$$


$$\mathbf{\tau}_{\mathbf{3}}\left\lbrack \mathbf{\text{Nm}} \right\rbrack\mathbf{=}\ddot{\mathbf{\theta}_{\mathbf{2}}}\mathbf{J}_{\mathbf{3}\mathbf{Z}}\mathbf{-}\mathbf{m}_{\mathbf{3}}\mathbf{r}_{\mathbf{1}}\mathbf{\text{co}}\operatorname{s}\left( \mathbf{\theta}_{\mathbf{2}} \right)\mathbf{+}\mathbf{m}_{\mathbf{3}}\mathbf{g}\mathbf{l}_{\mathbf{2}}\mathbf{cos(}\mathbf{\theta}_{\mathbf{2}}\mathbf{)}$$


Wyszukiwarka

Podobne podstrony:
dynamika roboty
tchoń, robotyka1, Dynamika manipulatora
Wykład 2009 2010 dynamika, Automatyka i Robotyka, SEMESTR 5, NEMAR, Nemar stary, nemar, nemar DUŻO,
obliczenia do robota, Automatyka i Robotyka, Semestr 4, Kinematyka i Dynamika Robotów i Manipulatoró
Kinematyka odwrotna, Automatyka i Robotyka, Semestr 4, Kinematyka i Dynamika Robotów i Manipulatorów
Wykład 2010 2011 dynamika, Automatyka i Robotyka, SEMESTR 5, NEMAR, Nemar stary, nemar, nemar DUŻO,
Proste zadnie kinematyki, Automatyka i Robotyka, Semestr IV, Kinematyka i dynamika robotów, KIDRIM,
Notacja Denavita, Automatyka i Robotyka, Semestr 4, Kinematyka i Dynamika Robotów i Manipulatorów, p
Robotyka Dynamika gotowe
Dynamika1
Techniki wywierania wplywu oparte na dynamice interakcji
BHP roboty murarskie
Analiza dynamiczna chodu w fazie podporu
dynamika bryly sztywnej(1)

więcej podobnych podstron