1.SCHEMAT STATYCZNY Z OBCIĄŻENIEM RZECZYWISTYM

2.OBLICZENIA SIŁ BIERNYCH OD OBCIĄŻENIA RZECZYWISTEGO


$$\left\{ \begin{matrix} \Sigma M_{D} = 0 \\ \Sigma M_{C}^{L} = 0 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} 9H_{A} + 9V_{B} - 6 \times 5 - 1,8 \times 9 \times 4,5 = 0 \\ 3H_{A} + 4V_{B} - 1,8 \times 3 \times 1,5 = 0 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} 9H_{A} + 9V_{B} - 30 - 72,9 = 0 \\ 3H_{A} + 4V_{B} - 8,1 = 0 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} 9H_{A} + 9V_{B} - 102,9 = 0 \\ 4V_{B} = 8,1 - 3H_{A} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} 9H_{A} + 9V_{B} = 102,9 \\ V_{B} = 2,025 - 0,75H_{A} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} 9H_{A} + 9(2,025 - 0,75H_{A}) = 102,9 \\ V_{B} = 2,025 - 0,75H_{A} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} 9H_{A} + 18,225 - 6,75H_{A} = 102,9 \\ V_{B} = 2,025 - 0,75H_{A} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} 2,25H_{A} = 84,675 \\ V_{B} = 2,025 - 0,75H_{A} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} H_{A} = 37,63333333 \\ V_{B} = 2,025 - 0,75 \times 37,63333333 \\ \end{matrix} \right.\ $$


HA=37,633kN VB=26,200kN

ΣX = 0

37, 63333333 − HD − 1, 8 × 9 = 0

HD=21,433kN

ΣY = 0

−26, 200 + VD − 6 = 0

VD=32,200kN

3.OBLICZENIE SIŁ W PRZEGUBIE „C”

ΣX = 0

37, 63333333 − HC − 1, 8 × 3 = 0

HC=32,233kN

ΣY = 0

−26, 200 + VC − 6 = 0

VC=32,200kN

ΣX = 0

−21, 43333333 + HC − 1, 8 × 6 = 0

HC=32,233kN

ΣY = 0

32, 200 + VC − 6 = 0

VC=26,200kN

4.OBLICZENIA SIŁ WEWNĘTRZNYCH OD OBCIĄŻENIA RZECZYWISTEGO

PRĘT B-E

0 ≤ x ≤ 4

ΣX = 0     T=OkN

ΣY = 0     N − 26, 200 = 0     N=26,200kN

ΣM = 0     M=OkNm

PRĘT A-E


0 ≤ x ≤ 3


0 ≤ y ≤ 3


$$\tan \propto = \frac{3}{3} = 1\ \ \ \ \ \propto = 45$$


sin ∝ =0, 707106781


cos ∝ =0, 707106781


ΣX = 0


37, 63333333 × sin ∝ −1, 8 × y × cos ∝ +N = 0


N = −37, 63333333 × sin ∝ +1, 8 × y × cos∝


N(0)=26,611kN


N(3)=22,085kN


ΣY = 0


37, 63333333 × cos ∝ −1, 8 × y × sin ∝ −T = 0


T = 37, 63333333 × cos ∝ −1, 8 × y × sin∝


T(0)=26,611kN


T(3)=22,085kN


ΣM = 0


37, 63333333 × y − 0, 9y2 − M = 0


M = 37, 63333333 × y − 0, 9y2


M(0)=0kNm


M(3)=104,800kNm

PRĘT C-E


0 ≤ x ≤ 4


ΣX = 0


N − 32, 233 = 0


N=32,233kN


ΣY = 0


T − 6 + 32, 200 = 0


T(0)=26,200kN


ΣM = 0


M + 6x − 32, 200x = 0


M = −6x + 32, 200x


M(0)=0kNm


M(4)=104,800kNm

PRĘT C-F


0 ≤ x ≤ 5


ΣX = 0


N + 32, 233 = 0


N=32,233kN


ΣY = 0


T − 6 − 26, 200 = 0


T=32,200kN


ΣM = 0


M − 6x − 26, 200x = 0


M = −6x − 26, 200x


M(0)=0kNm


M(5)=161,000kNm

PRĘT D-F


0 ≤ x ≤ 6


ΣX = 0


T − 1, 8x − 21, 43333333 = 0


T = 1, 8x + 21, 43333333


T(0)=21,433kN


T(6)=32,233kN


ΣY = 0


N + 32, 200 = 0


N=32,200kN


ΣM = 0


21, 43333333x + 0, 9x2 + M = 0


M = −21, 43333333x − 0, 9x2


M(0)=0kNm


M(6)=161,000kNm

5.WYKRESY SIŁ WEWNĘTRZNYCH OD OBCIĄŻENIA RZECZYWISTEGO.

6.SCHEMAT STATYCZNY OBCIĄŻONY WIRTUALNĄ SIŁĄ SKUPIONĄ $\overset{\overline{}}{\mathbf{P}}$


$$\left\{ \begin{matrix} \Sigma M_{D} = 0 \\ \Sigma M_{C}^{L} = 0 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} 9{\overset{\overline{}}{H}}_{A} + 9{\overset{\overline{}}{V}}_{B} + 2 \times \overset{\overline{}}{1} = 0 \\ 3{\overset{\overline{}}{H}}_{A} + 4{\overset{\overline{}}{V}}_{B} - 4 \times \overset{\overline{}}{1} = 0 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} {\overset{\overline{}}{H}}_{A} = - {\overset{\overline{}}{V}}_{B} - \frac{2}{9} \times \overset{\overline{}}{1} \\ {\overset{\overline{}}{V}}_{B} = - \frac{3}{4}{\overset{\overline{}}{H}}_{A} + \overset{\overline{}}{1} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} {\overset{\overline{}}{H}}_{A} = - {\overset{\overline{}}{V}}_{B} - \frac{2}{9} \times \overset{\overline{}}{1} \\ {\overset{\overline{}}{V}}_{B} = \frac{3}{4}{\overset{\overline{}}{V}}_{B} + \frac{1}{6} \times \overset{\overline{}}{1} + \overset{\overline{}}{1} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} {\overset{\overline{}}{H}}_{A} = - {\overset{\overline{}}{V}}_{B} - \frac{2}{9} \times \overset{\overline{}}{1} \\ \frac{1}{4}{\overset{\overline{}}{V}}_{B} = \frac{7}{6} \times \overset{\overline{}}{1} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} {\overset{\overline{}}{H}}_{A} = - {\overset{\overline{}}{V}}_{B} - \frac{2}{9} \times \overset{\overline{}}{1} \\ {\overset{\overline{}}{V}}_{B} = \frac{14}{3} \times \overset{\overline{}}{1} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} {\overset{\overline{}}{\mathbf{H}}}_{\mathbf{A}}\mathbf{= -}\frac{\mathbf{44}}{\mathbf{9}}\mathbf{\times}\overset{\overline{}}{\mathbf{1}} \\ {\overset{\overline{}}{\mathbf{V}}}_{\mathbf{B}}\mathbf{=}\frac{\mathbf{14}}{\mathbf{3}}\mathbf{\times}\overset{\overline{}}{\mathbf{1}} \\ \end{matrix} \right.\ $$


ΣX = 0

${\overset{\overline{}}{H}}_{A} - {\overset{\overline{}}{H}}_{D} + \overset{\overline{}}{1} = 0$


$${\overset{\overline{}}{H}}_{D} = - \frac{44}{9} \times \overset{\overline{}}{1} + \overset{\overline{}}{1} = 0$$


$${\overset{\overline{}}{\mathbf{H}}}_{\mathbf{D}}\mathbf{= -}\frac{\mathbf{35}}{\mathbf{9}}\mathbf{\times}\overset{\overline{}}{\mathbf{1}}$$

ΣY = 0

${\overset{\overline{}}{V}}_{B} + {\overset{\overline{}}{V}}_{D} = 0$


$${\overset{\overline{}}{\mathbf{V}}}_{\mathbf{D}}\mathbf{= -}\frac{\mathbf{14}}{\mathbf{3}}\mathbf{\times}\overset{\overline{}}{\mathbf{1}}$$

7.OBLICZENIE SIŁ W PRZGUBIE „C”


ΣX = 0


$$- 44 - {\overset{\overline{}}{H}}_{C} + 9 = 0$$


$${\overset{\overline{}}{\mathbf{H}}}_{\mathbf{C}}\mathbf{= - 35}$$


ΣY = 0


$$14 + {\overset{\overline{}}{V}}_{C} = 0$$


$${\overset{\overline{}}{\mathbf{V}}}_{\mathbf{C}}\mathbf{= - 14}$$


ΣX = 0


$$35 + {\overset{\overline{}}{H}}_{C} = 0$$


$${\overset{\overline{}}{\mathbf{H}}}_{\mathbf{C}}\mathbf{= - 35}$$


ΣY = 0


$${\overset{\overline{}}{V}}_{C} - 14 = 0$$


$${\overset{\overline{}}{\mathbf{V}}}_{\mathbf{C}}\mathbf{= 14}$$

8.OBLICZENIE MOMENTÓW ZGINAJĄCYCH OD OBCIĄŻENIA WIRTUALNEGO

MOMENTY W WĘŹLE „E”


$$\overset{\overline{}}{M} = - \frac{44}{3} \times \overset{\overline{}}{1}$$


$$\overset{\overline{}}{M} = - \frac{12}{3} \times \overset{\overline{}}{1}$$


$$\overset{\overline{}}{M} = - \frac{56}{3} \times \overset{\overline{}}{1}$$

MOMENTY W WĘŹLE „F”


$$\overset{\overline{}}{M} = \frac{70}{3} \times \overset{\overline{}}{1}$$


$$\overset{\overline{}}{M} = \frac{70}{3} \times \overset{\overline{}}{1}$$

9.WYKRES MOMENTÓW ZGINAJĄCYCH OD OBCIĄŻENIA WIRTUALNEGO

10.PRZYJĘCIE PRZEKROJU POPRZECZNEGO PRĘTA DLA CAŁEJ RAMY

Przyjęto dwuteownik równoległościenny IPE 400 wg PN-91/H-93419 o następujących danych:

h=40cm

A=84,5cm2

IX=23130cm4 = 0,00023130m4

IY=1320cm4

WX=1160cm3

WX=146cm3

E = 205000MPa = 205000000kN/m2


$$\sigma_{\text{dop}} = 150MPa = 15,0\frac{\text{kN}}{\text{cm}^{2}}$$


Mmax = 161kNm = 16100kNcm


$$\frac{M_{\max}}{\sigma_{\text{dop}}} = \frac{16100}{15} = 1073,333\text{cm}^{3} < W_{x} = 1160\text{cm}^{3}$$


$$\sigma_{x} = \frac{M_{\max}}{W_{x}} = \frac{16100}{1160} = 13,879\frac{\text{kN}}{\text{cm}^{2}} = 138,79MPa < \sigma_{\text{dop}} = 150MPa$$

11.OBLICZENIE PRZEMIESZCZENIA POZIOMEGO PUNKTU „K”

PRĘT A-E


$$\delta = \frac{1}{\text{EI}} \times \frac{1}{3}\left\lbrack \left( - \frac{1}{2} \times 104,800 \times 4,242641 \times \frac{2}{3} \times 44 \right) - \left( \frac{2}{3} \times 4,242641 \times \frac{1,8 \times 3^{2}}{8} \times \frac{1}{2} \times 44 \right) \right\rbrack = \frac{1}{\text{EI}} \times \frac{1}{3}\left\lbrack - 6521,22206 - 126,0064377 \right\rbrack = \frac{\mathbf{1}}{\mathbf{\text{EI}}}\mathbf{\times}\frac{\mathbf{1}}{\mathbf{3}}\mathbf{\times}\left( \mathbf{- 6395,215622} \right)$$


$$\left\lbrack \left( kNm \times m \times m \right) - \left( m \times \frac{\text{kN}}{m} \times m^{2} \times m \right) \right\rbrack = \left\lbrack \text{kN}m^{3} \right\rbrack$$

PRĘT B-E


δ = 0 [kNm3]

PRĘT C-E


$$\delta = \frac{1}{\text{EI}} \times \frac{1}{3} \times \left( - \frac{1}{2} \times 104,800 \times 4 \times \frac{2}{3} \times 56 \right) = \frac{\mathbf{1}}{\mathbf{\text{EI}}}\mathbf{\times}\frac{\mathbf{1}}{\mathbf{3}}\mathbf{\times}\left( \mathbf{- 7825,066667} \right)$$


[kNm×m×m] = [kNm3]

PRĘT C-F


$$\delta = \frac{1}{\text{EI}} \times \frac{1}{3} \times \left( - \frac{1}{2} \times 161,000 \times 5 \times \frac{2}{3} \times 70 \right) = \frac{\mathbf{1}}{\mathbf{\text{EI}}}\mathbf{\times}\frac{\mathbf{1}}{\mathbf{3}}\mathbf{\times}\left( \mathbf{- 18783,33333} \right)$$


[kNm×m×m] = [kNm3]

PRĘT D-F


$$\delta = \frac{1}{\text{EI}} \times \frac{1}{3} \times \left\lbrack \left( - \frac{1}{2} \times 161,000 \times 6 \times \frac{2}{3} \times 70 \right) + \left( \frac{2}{3} \times 6 \times \frac{1,8 \times 6^{2}}{8} \times \frac{1}{2} \times 70 \right) \right\rbrack = \frac{1}{\text{EI}} \times \frac{1}{3} \times \left\lbrack - 22540 + 1134 \right\rbrack = \frac{\mathbf{1}}{\mathbf{\text{EI}}}\mathbf{\times}\frac{\mathbf{1}}{\mathbf{3}}\mathbf{\times}\left( \mathbf{- 21406} \right)$$


$$\left\lbrack \left( kNm \times m \times m \right) - \left( m \times \frac{\text{kN}}{m} \times m^{2} \times m \right) \right\rbrack = \left\lbrack \text{kN}m^{3} \right\rbrack$$


$$\delta = \frac{1}{\text{EI}} \times \frac{1}{3} \times \left\lbrack - 6395,215622 - 7825,066667 - 18783,33333 - 21406 \right\rbrack = \frac{1}{\text{EI}} \times \frac{- 41619,18438}{3} = \frac{- 13873,06146}{205000000 \times 0,00023130} = - 0,292578774 \approx \mathbf{- 0,293}$$


$$\left\lbrack \frac{\text{kN}m^{3}}{\frac{\text{kN}}{m^{2}} \times m^{4}} \right\rbrack = \left\lbrack m \right\rbrack$$

Punkt „K” doznał przemieszczenia poziomego 0,293m.